Skip to content

MALIBUSPIRIT/visualization_lecture

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

visualization_lecture

License

Introduction

Material, notes, code and data for teaching visualization, dimensionality reduction and mathematics of machine learning.

Talks

  • Talk on visualization

https://www.youtube.com/watch?v=Bhv46UYAkg0

  • Talk on unsupervised learning

https://youtu.be/VMrSHp-sCHo?si=P_FOEZ6pJHy9xJf6

Slides

  • Slides on visualization are here:

https://github.com/neelsoumya/visualization_lecture/blob/main/visualization_lecture.pdf

Short version

https://github.com/neelsoumya/visualization_lecture/blob/main/visualization_lecture_SHORT.pdf

  • Slides on unsupervised learning are here:

https://github.com/neelsoumya/visualization_lecture/blob/main/Presentation_intro.pptx

Notes

Some notes, mathematical proofs, concepts and activities are here:

https://github.com/neelsoumya/visualization_lecture/blob/main/mathematics_data_science.pdf

https://osf.io/mnh8d/

https://www.researchgate.net/publication/375186575_Everything_you_wanted_to_know_about_the_mathematics_of_dimensionality_reduction_and_visualization_but_were_afraid_to_ask_Teaching_resources_and_activities

Code

Code for visualization in R, model diagnostics and linear mixed effects models

https://github.com/neelsoumya/anova_linear_mixed_effects_examples

Rmarkdown package using Tufte's principles

https://github.com/rstudio/tufte

Resources

  • Thinking outside the 10 dimensional box

https://www.popularmechanics.com/science/math/a27737/visualize-higher-dimensions/

https://youtu.be/zwAD6dRSVyI

  • Different kinds of cartographic projections

https://whereexactlymaps.com/blogs/articles/an-introduction-to-map-projections

https://www.viewsoftheworld.net/?p=752

  • Great talks on visualization and how to do it right

https://www.youtube.com/watch?v=iipVlV4I_Vg&list=PLB2SCq-tZtVnXalwtfVPcjwy0xJbu-btN&index=4

  • Minard drawing (The best statistical graphic ever drawn)

https://www.edwardtufte.com/tufte/minard

code for analysing this data

https://github.com/joannecheng/napoleon_analysis

https://thoughtbot.com/blog/analyzing-minards-visualization-of-napoleons-1812-march

  • Tufte's principles in R

https://jtr13.github.io/cc19/tuftes-principles-of-data-ink.html

  • Data visualization excellence

https://classes.engr.oregonstate.edu/eecs/winter2018/cs519-400/modules/4-data-visualization/1-excellence-integrity/

  • Visualization projects

https://nagix.github.io/

  • Good and bad visualizations

https://policyviz.com/2023/02/07/10-ways-to-mislead-with-data-visualization/

https://wpdatatables.com/data-visualization-examples/

https://wpdatatables.com/misleading-data-visualization-examples/

https://www.qlik.com/us/data-visualization/data-visualization-examples

https://policyviz.com/2020/08/10/on-diverging-color-palettes-in-maps/

https://www.oldstreetsolutions.com/good-and-bad-data-visualization

https://viz.wtf/

https://r-graph-gallery.com/

Installation

https://www.rstudio.com/products/rstudio/download/preview/

  • Install the following packages in R:
install.packages('rmarkdown')
install.packages('knitr')
install.packages('tinytex')
install.packages('sqldf')
install.packages('ggplot2')
install.packages('gplots')
install.packages('lme4')
install.packages('lmerTest')
install.packages('pROC')
install.packages('precrec')
install.packages('PRROC')
install.packages('boot')
install.packages('mlbench')
install.packages('caret')
install.packages('rpart')
install.packages('partykit')
install.packages('rlib')
devtools::install_github('neelsoumya/rlib')
install.packages('multcomp')
install.packages('lsmeans')
install.packages('moments')
  • Download a zip file of this repository and unzip it

or

clone it

git clone https://github.com/neelsoumya/teaching_reproducible_science_R

cd teaching_reproducible_science_R
  • Go to this new directory and set working directory to this directory in R.
setwd('~/teaching_reproducible_science_R')
  • In R studio, run the markdown

rmarkdown.rmd

https://github.com/neelsoumya/teaching_reproducible_science_R/blob/main/rmarkdown.rmd

Template code

rmarkdown.rmd

https://github.com/neelsoumya/teaching_reproducible_science_R/blob/main/rmarkdown.rmd

Running this will create a report like the following:

https://github.com/neelsoumya/teaching_reproducible_science_R/blob/main/rmarkdown.pdf

Exercises

  • Create an Rmarkdown for the Boston housing dataset. See the tutorial below and just load and plot the data.

https://medium.com/analytics-vidhya/a-simple-ml-project-in-r-using-the-boston-dataset-e1143146ffb0

  • A simple script to help you get started is here simple_script.R

https://github.com/neelsoumya/teaching_reproducible_science_R/blob/main/simple_project.R

Resources and further reading

https://rmarkdown.rstudio.com/lesson-1.html

https://bookdown.org/yihui/rmarkdown-cookbook/

https://ropensci.org/

https://bookdown.org/home/

https://github.com/neelsoumya/dsSurvival_bookdown

https://www.coursera.org/learn/r-programming

https://swcarpentry.github.io/r-novice-gapminder/guide/index.html

https://github.com/aaronpeikert/repro-workshop

Lecture notes outline

https://github.com/neelsoumya/teaching_reproducible_science_R/blob/main/slides.pdf

  • Your data, your model decisions, parameters and your data filtering decisions will keep on changing. How do you know 6 months later what has changed? Document your code and your output and your design decisions all in one place.

  • Reproducible pipeline

  • Know exactly what changed and when

  • Know how to rerun the analysis and get the (same) results

  • This is like your research notebook

  • Some experiences/case studies of using Rmarkdown notebooks and helping biologists use them to analyze their own data (30 minute talk)

  • When you are deep in your work, it can be difficult to make code pretty, comment it and make it reproducible. But you will regret not doing this when you park the work and 6 months later your colloaborators/reviewers ask for additional analysis or changing some assumption, etc. Your code should then be ready (you should be able to click a button and reproduce the figures for your paper).

  • Example of IL10 project (tSNE and heatmaps from a bioinformatics project)

Example tSNE

Example heatmaps

  • You can easily create R packages or Rmarkdown documents in R Studio (see screenshots in this folder/repository and below)

A screenshot of how to create R packages in R Studio

A screenshot of how to create R markdowns in R Studio

Code examples

  • A very simple R markdown will look like the following

Schematic of R markdown

  • Here are some very simple commands that you use to generate your document (you write your code in R and it gets compiled into a document like PDF)

Basic elements of markdown

See the link below for more details

https://www.rstudio.com/wp-content/uploads/2015/03/rmarkdown-reference.pdf

  • Now head over to the file named rmarkdown.rmd

https://github.com/neelsoumya/teaching_reproducible_science_R/blob/main/rmarkdown.rmd

Running this will create a report like the following:

https://github.com/neelsoumya/teaching_reproducible_science_R/blob/main/rmarkdown.pdf

Screenshot of completed report

  • A typical header of a R markdown file will look like
---

title: "Analysis and Writeup"

header-includes:

- \usepackage{placeins}

- \usepackage{float}

- \floatplacement{figure}{H}

output:

  pdf_document:

    fig_caption: yes

    keep_tex: yes

    latex_engine: xelatex

    number_sections: yes

  word_document: default

  html_document:

    df_print: paged

bibliography: Periphery_project.bib

urlcolor: blue

---

```{r include=FALSE}

knitr::opts_chunk$set(echo = TRUE)

knitr::opts_chunk$set(cache = TRUE)

knitr::opts_chunk$set(warning = FALSE)

knitr::opts_chunk$set(out.extra = '')

#knitr::opts_chunk$set(fig.pos = 'H')

\begin{centering}

\vspace{3 cm}

\Large

\normalsize

Soumya Banerjee, r format(Sys.time(), "%b %d %Y")

\vspace{3 cm}

\end{centering}

\setcounter{tocdepth}{2}

\tableofcontents

\newpage


library(knitr)

library(gridExtra)

library(rmarkdown)

# EQUATIONS in rmarkdown

$$ eGFR = eGFR_{0} + b_{before}*t_{before} $$

Italics in rmarkdown using metafor

Code can be rendered or shown in rmarkdown using


dsBaseClient::ds.summary(x='surv_object')


# Load packages and settings

library(sqldf)

library(ggplot2)

library(knitr)

library(rmarkdown)

library(gplots)

library(RColorBrewer)

library(png)

library(grid)

library(gridExtra)

library(lme4)

library(lmerTest)

library(rpart)


# code here

Acknowledgements

Neil Lawrence, Carl Henrik Ek, Joyeeta Ghose

Contact

Soumya Banerjee

[email protected]

License

Packages

No packages published

Languages

  • R 99.6%
  • Shell 0.4%