Skip to content

Commit

Permalink
Add TRIAD_PARTED_FUSED kernel
Browse files Browse the repository at this point in the history
  • Loading branch information
MrBurmark committed Oct 25, 2023
1 parent 580ecb0 commit 1536b7a
Show file tree
Hide file tree
Showing 11 changed files with 1,139 additions and 0 deletions.
3 changes: 3 additions & 0 deletions src/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -228,6 +228,9 @@ blt_add_executable(
stream/TRIAD_PARTED.cpp
stream/TRIAD_PARTED-Seq.cpp
stream/TRIAD_PARTED-OMPTarget.cpp
stream/TRIAD_PARTED_FUSED.cpp
stream/TRIAD_PARTED_FUSED-Seq.cpp
stream/TRIAD_PARTED_FUSED-OMPTarget.cpp
common/DataUtils.cpp
common/Executor.cpp
common/KernelBase.cpp
Expand Down
6 changes: 6 additions & 0 deletions src/common/RAJAPerfSuite.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -76,6 +76,7 @@
#include "stream/ADD.hpp"
#include "stream/TRIAD.hpp"
#include "stream/TRIAD_PARTED.hpp"
#include "stream/TRIAD_PARTED_FUSED.hpp"
#include "stream/DOT.hpp"

//
Expand Down Expand Up @@ -218,6 +219,7 @@ static const std::string KernelNames [] =
std::string("Stream_MUL"),
std::string("Stream_TRIAD"),
std::string("Stream_TRIAD_PARTED"),
std::string("Stream_TRIAD_PARTED_FUSED"),

//
// Apps kernels...
Expand Down Expand Up @@ -848,6 +850,10 @@ KernelBase* getKernelObject(KernelID kid,
kernel = new stream::TRIAD_PARTED(run_params);
break;
}
case Stream_TRIAD_PARTED_FUSED : {
kernel = new stream::TRIAD_PARTED_FUSED(run_params);
break;
}

//
// Apps kernels...
Expand Down
1 change: 1 addition & 0 deletions src/common/RAJAPerfSuite.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -136,6 +136,7 @@ enum KernelID {
Stream_MUL,
Stream_TRIAD,
Stream_TRIAD_PARTED,
Stream_TRIAD_PARTED_FUSED,

//
// Apps kernels...
Expand Down
6 changes: 6 additions & 0 deletions src/stream/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -44,5 +44,11 @@ blt_add_library(
TRIAD_PARTED-Cuda.cpp
TRIAD_PARTED-OMPTarget.cpp
TRIAD_PARTED-OMP.cpp
TRIAD_PARTED_FUSED.cpp
TRIAD_PARTED_FUSED-Seq.cpp
TRIAD_PARTED_FUSED-Hip.cpp
TRIAD_PARTED_FUSED-Cuda.cpp
TRIAD_PARTED_FUSED-OMPTarget.cpp
TRIAD_PARTED_FUSED-OMP.cpp
DEPENDS_ON common ${RAJA_PERFSUITE_DEPENDS}
)
177 changes: 177 additions & 0 deletions src/stream/TRIAD_PARTED_FUSED-Cuda.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,177 @@
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~//
// Copyright (c) 2017-23, Lawrence Livermore National Security, LLC
// and RAJA Performance Suite project contributors.
// See the RAJAPerf/LICENSE file for details.
//
// SPDX-License-Identifier: (BSD-3-Clause)
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~//

#include "TRIAD_PARTED_FUSED.hpp"

#include "RAJA/RAJA.hpp"

#if defined(RAJA_ENABLE_CUDA)

#include "common/CudaDataUtils.hpp"

#include <iostream>

namespace rajaperf
{
namespace stream
{

#define TRIAD_PARTED_FUSED_MANUAL_FUSER_SETUP_CUDA \
Real_ptr* a_ptrs; \
Real_ptr* b_ptrs; \
Real_ptr* c_ptrs; \
Real_type* alpha_ptrs; \
Index_type* ibegin_ptrs; \
Index_type* len_ptrs; \
allocData(DataSpace::CudaPinned, a_ptrs, parts.size()-1); \
allocData(DataSpace::CudaPinned, b_ptrs, parts.size()-1); \
allocData(DataSpace::CudaPinned, c_ptrs, parts.size()-1); \
allocData(DataSpace::CudaPinned, alpha_ptrs, parts.size()-1); \
allocData(DataSpace::CudaPinned, ibegin_ptrs, parts.size()-1); \
allocData(DataSpace::CudaPinned, len_ptrs, parts.size()-1);

#define TRIAD_PARTED_FUSED_MANUAL_FUSER_TEARDOWN_CUDA \
deallocData(DataSpace::CudaPinned, a_ptrs); \
deallocData(DataSpace::CudaPinned, b_ptrs); \
deallocData(DataSpace::CudaPinned, c_ptrs); \
deallocData(DataSpace::CudaPinned, alpha_ptrs); \
deallocData(DataSpace::CudaPinned, ibegin_ptrs); \
deallocData(DataSpace::CudaPinned, len_ptrs);

template < size_t block_size >
__launch_bounds__(block_size)
__global__ void triad_parted_fused(Real_ptr* a_ptrs, Real_ptr* b_ptrs,
Real_ptr* c_ptrs, Real_type* alpha_ptrs,
Index_type* ibegin_ptrs, Index_type* len_ptrs)
{
Index_type j = blockIdx.y;

Real_ptr a = a_ptrs[j];
Real_ptr b = b_ptrs[j];
Real_ptr c = c_ptrs[j];
Real_type alpha = alpha_ptrs[j];
Index_type ibegin = ibegin_ptrs[j];
Index_type iend = ibegin + len_ptrs[j];

for (Index_type i = ibegin + threadIdx.x + blockIdx.x * block_size;
i < iend;
i += block_size * gridDim.x) {
TRIAD_PARTED_FUSED_BODY;
}
}


template < size_t block_size >
void TRIAD_PARTED_FUSED::runCudaVariantImpl(VariantID vid)
{
const Index_type run_reps = getRunReps();

auto res{getCudaResource()};

TRIAD_PARTED_FUSED_DATA_SETUP;

if ( vid == Base_CUDA ) {

TRIAD_PARTED_FUSED_MANUAL_FUSER_SETUP_CUDA

startTimer();
for (RepIndex_type irep = 0; irep < run_reps; ++irep) {

Index_type index = 0;
Index_type len_sum = 0;

for (size_t p = 1; p < parts.size(); ++p ) {
const Index_type ibegin = parts[p-1];
const Index_type iend = parts[p];

a_ptrs[index] = a;
b_ptrs[index] = b;
c_ptrs[index] = c;
alpha_ptrs[index] = alpha;
ibegin_ptrs[index] = ibegin;
len_ptrs[index] = iend-ibegin;
len_sum += iend-ibegin;
index += 1;
}
Index_type len_ave = (len_sum + index-1) / index;
dim3 nthreads_per_block(block_size);
dim3 nblocks((len_ave + block_size-1) / block_size, index);
constexpr size_t shmem = 0;
triad_parted_fused<block_size><<<nblocks, nthreads_per_block, shmem, res.get_stream()>>>(
a_ptrs, b_ptrs, c_ptrs, alpha_ptrs, ibegin_ptrs, len_ptrs);
cudaErrchk( cudaGetLastError() );
cudaErrchk( cudaStreamSynchronize( res.get_stream() ) );

}
stopTimer();

TRIAD_PARTED_FUSED_MANUAL_FUSER_TEARDOWN_CUDA

} else if ( vid == RAJA_CUDA ) {

using AllocatorHolder = RAJAPoolAllocatorHolder<RAJA::cuda::pinned_mempool_type>;
using Allocator = AllocatorHolder::Allocator<char>;

AllocatorHolder allocatorHolder;

using workgroup_policy = RAJA::WorkGroupPolicy <
RAJA::cuda_work_async<block_size>,
RAJA::unordered_cuda_loop_y_block_iter_x_threadblock_average,
RAJA::constant_stride_array_of_objects >;

using workpool = RAJA::WorkPool< workgroup_policy,
Index_type,
RAJA::xargs<>,
Allocator >;

using workgroup = RAJA::WorkGroup< workgroup_policy,
Index_type,
RAJA::xargs<>,
Allocator >;

using worksite = RAJA::WorkSite< workgroup_policy,
Index_type,
RAJA::xargs<>,
Allocator >;

workpool pool(allocatorHolder.template getAllocator<char>());
pool.reserve(parts.size()-1, 1024ull*1024ull);

startTimer();
for (RepIndex_type irep = 0; irep < run_reps; ++irep) {

for (size_t p = 1; p < parts.size(); ++p ) {
const Index_type ibegin = parts[p-1];
const Index_type iend = parts[p];

auto triad_parted_fused_lam = [=] __device__ (Index_type i) {
TRIAD_PARTED_FUSED_BODY;
};

pool.enqueue(
RAJA::TypedRangeSegment<Index_type>(ibegin, iend),
triad_parted_fused_lam );
}
workgroup group = pool.instantiate();
worksite site = group.run(res);
res.wait();

}
stopTimer();

} else {
getCout() << "\n TRIAD_PARTED_FUSED : Unknown Cuda variant id = " << vid << std::endl;
}
}

RAJAPERF_GPU_BLOCK_SIZE_TUNING_DEFINE_BOILERPLATE(TRIAD_PARTED_FUSED, Cuda)

} // end namespace stream
} // end namespace rajaperf

#endif // RAJA_ENABLE_CUDA
Loading

0 comments on commit 1536b7a

Please sign in to comment.