Skip to content

re-implementation of Squeeze and Excitation Network

Notifications You must be signed in to change notification settings

LEEYEONSU/pytorch--SENet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

33 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Squeeze - and - Excitation Networks implementation (pytorch)

  • For training

    python main.py 
    # argparser Default 
    --print_freq 32 --save_dir ./save_model/ --save_every 10
    --lr 0.1 --weight_decay 1e-4 --momentum 0.9 
    --Epoch 80 --batch_size 128 --test_batch_size 100 
    --cutout True --n_masks 1 --length 16 
    --normalize batchnorm
    

Result
  • Batch normalization
resnet(from yeonsu repository) SE + resnset (this code) + batchnorm SEresnet + cutout + batch norm (this code) (cut length : 16)
top - 1 error 6.27 6.15 4.76
  • Group normalization
SE + resnet (this code) + groupnorm SEresnet + cutout + groupnorm (this code) (cut length : 16)
top - 1 error 7.46 6.56
  • Group normalization + weight standardization
SE + resnet (this code) + groupnorm + weight standardization SEresnet + cutout + groupnorm (this code) (cut length : 16) + weight standardization
top - 1 error 7.08 6.24

Preprocessing
Parameters
  • Weight_initialization - kaiming_normal
  • Optimizer
    • SGD
      • Learning_rate : 0.1
      • Milestones [250, 375]
      • gamma : 0.1
    • Weight_decay : 0.4
    • momentum : 0.9
Others

About

re-implementation of Squeeze and Excitation Network

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages