Skip to content

Kura0913/Airsim-DQN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

33 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

AirSim DQN Training

Directions

Collect the dinstance sensors installed on the vehicle, input them into the DQN neural network, and learn to operate the drone to complete the visit mission.

Requirement

VR environment

  • Unreal Engine
  • AirSim Plugin (or Colosseum)

python environment

  • python 3.9
pip install numpy==1.21.6
pip install opencv-python
pip install msgpack-rpc-python
pip install airsim
pip install matplotlib==3.4.3
pip install gymnasium
pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu113
pip install keyboard

Installation

git clone https://github.com/Kura0913/Airsim-DQN.git

file tree

Airsim-DQN
│  README.md
│  requirements.txt
│  run.py
│  settings.json
│  ShortestPath.py
│  
├─DQN
│      DQNAgent.py
│      DQNNet.py
│      Env.py
│      ReplayBuffer.py
│      
├─execute
│  └─runs
└─Tools
        AirsimTools.py
        DQNTools.py

Usage

settings.json

The contents of settings.json are as follows: The vehicle name is drone_1, the category is VehicleType, and 11 distance sensors are installed on the vehicle.

You can adjust the name of the vehicle according to your preference.

You can adjust the location or name of the distance sensor installed according to your own needs, but please note that if you adjust the name or number of distance sensors, you must modify the run.py code.

{
  "$schema": "./schema.json",
  "SeeDocsAt": "https://github.com/Microsoft/AirSim/blob/main/docs/settings.md",
  "SettingsVersion": 1.2,
  "SimMode": "Multirotor",
  "LogMessagesVisible": false,
  "CameraDefaults": {
    "CaptureSettings": [
      {
        "ImageType": 0,
        "Width": 1920,
        "Height": 1080,
        "FOV_Degrees": 90,
        "AutoExposureSpeed": 100,
        "AutoExposureBias": 0,
        "AutoExposureMaxBrightness": 0.64,
        "AutoExposureMinBrightness": 0.03,
        "MotionBlurAmount": 0,
        "TargetGamma": 1.0,
        "ProjectionMode": "",
        "OrthoWidth": 5.12
      },
      {
        "ImageType": 1,
        "Width": 1920,
        "Height": 1080
      },
      {
        "ImageType": 3,
        "Width": 1920,
        "Height": 1080
      },
      {
        "ImageType": 5,
        "Width": 1920,
        "Height": 1080
      }
    ]
  },
  "Vehicles": {
    "drone_1": {
      "VehicleType": "SimpleFlight",
      "AutoCreate": true,
      "AllowAPIAlways": true,
      "EnableTrace": false,
      "ClockType": "ScalableClock",
      "Cameras": {
        "front_camera": {
          "CaptureSettings": [
            {
              "ImageType": 0,
              "Width": 960,
              "Height": 540,
              "FOV_Degrees": 90
            }],
          "X": 0.0,
          "Y": 0.0,
          "Z": -0.5,
          "Pitch": 0.0,
          "Roll": 0.0,
          "Yaw": 0.0
        }
      },
      "Sensors":{
        "front_lidar": {
          "SensorType": 6,
          "Enabled" : true,
          "NumberOfChannels": 64,
          "RotationsPerSecond": 10,
          "PointsPerSecond": 1500000,
          "X": 0.5, "Y": 0, "Z": -1,
          "Roll": 0, "Pitch": 0, "Yaw" : 0,
          "VerticalFOVUpper": 26.8,
          "VerticalFOVLower": -26.8,
          "HorizontalFOVStart": -45,
          "HorizontalFOVEnd": 45,
          "DrawDebugPoints": true,
          "DataFrame": "SensorLocalFrame"
        }
      }
    }
  },  
  "PawnPaths": {
    "BareboneCar": {"PawnBP": "Class'/AirSim/VehicleAdv/Vehicle/VehicleAdvPawn.VehicleAdvPawn_C'"},
    "DefaultCar": {"PawnBP": "Class'/AirSim/VehicleAdv/SUV/SuvCarPawn.SuvCarPawn_C'"},
    "DefaultQuadrotor": {"PawnBP": "Class'/AirSim/Blueprints/BP_FlyingPawn.BP_FlyingPawn_C'"},
    "DefaultComputerVision": {"PawnBP": "Class'/AirSim/Blueprints/BP_ComputerVisionPawn.BP_ComputerVisionPawn_C'"}

  }
}

train

If there is no object corresponding to the object name in the VR environment, training cannot be started.

After the training is completed, a folder named today's date will be generated in 'Airsim-DQN\runs\train', which contains the weight of the training.

If you want to terminate the training, press the p key in cmd. After completing the current eposide, the training will be terminated and the weight will be stored.

python run.py
parameters initial directions
--episodes 5 training cycle
--batch_size 64 number of training samples
--gamma 0.99 weight of future reward
--epsilon 1.00 random action rate
--epsilon_min 0.2 epsilon's minimum
--decay_episode 500 set the episode where epsilon starts to decay
--decay 0.999 epsilon's decay rate
--object BP_Grid eearch object name
--device cpu cuda or cpu
--weight the default value is empty. You can enter the weight path to continue training
--infinite_loop False choose whether to enable infinite training mode

test

After training, you can use test.py show your train result.

python test.py
parameters initial directions
--episodes 5 testing times
--object BP_Grid search object name
--weight the default value is empty. You need select a weight for testing, otherwise the test cannot be performed.

pretrain.py

If the vr environment is big or training is not ideal, use pretrain.py to generate good weight for training.

After the training is completed, a folder named today's date will be generated in 'Airsim-DQN\runs\pretrain', which contains the weight of the training.

But it is recommended not to run too many episodes.

parameters initial directions
--episodes 5 training cycle
--batch_size 64 number of training samples
--gamma 0.99 weight of future reward
--object BP_Grid eearch object name
--device cpu cuda or cpu
--infinite_loop False choose whether to enable infinite training mode
--weight the default value is empty. You can enter the weight path to continue training

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages