Skip to content

Krystalz2018/DS-Take-Home-Challenge

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

43 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DS-Take-Home-Challenge

My practice on "A collection of take home chellenges".

Summary:

1. Conversion Rate

  • Website conversion rate analysis

2. Spanish Translation AB Test

  • A/B Test
  • Dealing with datetime

3. Employee Retention

  • Random Forest and its visualization

4. Identifying Fraudulent Activities

  • Dealing with datetime
  • XGBoost, cross_validation
  • Random Forest TreeClassifier
  • Feature Importance

5. Funnel Analysis

  • Coversion ratio calculation
  • DataFrame manipulation

6. Pricing Test

  • AB test
  • Conversion rate visualization

7. Marketing Email Campaign

  • Confusion Matrix
  • Random Forest Classifier

8. Song Challenge

  • Deal with JSON file
  • Groupby and DataFrame manipulation
  • Recommendation Model using KNN

9. Cluster Grocery

  • Parse columns with multiple values
  • KMeans clustering and visualization

10. Credit Card Transactions

  • Functions to detect credit fraud
  • Analysis of credit limit

11. User Referral Program

  • A/B test

12. Loan Granting

  • Grandient Boosting vs Random Forest vs Logistic Regression
  • Hyperparameter Tuning

13. JSON City Similarity

  • Dealing with JSON file
  • Create City Similarity Matrix

14. Optimization of employee shuttle stops

  • Using googlemap to measure the shortest distance

15. Diversity in the workplace

  • Defined functions to calculate the nuber of employees in different levels
  • Utilized GBM for salary prediction and feature importance

16. URL parsing challenge

  • Reading TXT file and transform to pandas dataframe
  • Using Groupby function and defined algorithms

17. Engagement Test

  • Student's t-test
  • A/B testing and its visualization

18. Online Video Challenge

  • Defined functions to identify video categories
  • Utilize video categories to provide product suggestions

19. Subscription Retention Rate

  • Defined functions to calculate each group's retention rate
  • Utilized log and exp function to predict the results and fit linear regression model

20. Ads Analysis

  • Time series analysis on the ads trend
  • Visualization of clustering results

References:

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published