Documentation | Workflows | Code coverage | Quality assurance |
---|---|---|---|
This package implements energy-conserving solvers for the incompressible Navier-Stokes equations on a staggered Cartesian grid. It is based on the Matlab package INS2D/INS3D.
To install IncompressibleNavierStokes, open up a Julia-REPL, type ]
to get
into Pkg-mode, and type:
add IncompressibleNavierStokes
which will install the package and all dependencies to your local environment.
Note that IncompressibleNavierStokes requires Julia version 1.7
or above.
See the
Documentation
for examples of some typical workflows. More examples can be found in the
examples
directory.
The velocity and pressure fields may be visualized in a live session using
Makie. Alternatively,
ParaView may be used, after exporting individual
snapshot files using the save_vtk
function, or the full time series using the
VTKWriter
processor.
Actuator (2D) | Backward Facing Step (2D) | Decaying Turbulence (2D) | Taylor-Green Vortex (2D) |
Actuator (3D) | Backward Facing Step (3D) | Decaying Turbulence (3D) | Taylor-Green Vortex (3D) |
The following example code using a negative body force on a small rectangle with an unsteady inflow. It simulates a wind turbine (actuator) under varying wind conditions.
using GLMakie
using IncompressibleNavierStokes
# Viscosity model
viscosity_model = LaminarModel(; Re = 100.0)
# Boundary conditions: Unsteady BC requires time derivatives
u_bc(x, y, t) = x ≈ 0.0 ? cos(π / 6 * sin(π / 6 * t)) : 0.0
v_bc(x, y, t) = x ≈ 0.0 ? sin(π / 6 * sin(π / 6 * t)) : 0.0
dudt_bc(x, y, t) = x ≈ 0.0 ? -(π / 6)^2 * cos(π / 6 * t) * sin(π / 6 * sin(π / 6 * t)) : 0.0
dvdt_bc(x, y, t) = x ≈ 0.0 ? (π / 6)^2 * cos(π / 6 * t) * cos(π / 6 * sin(π / 6 * t)) : 0.0
bc_type = (;
u = (; x = (:dirichlet, :pressure), y = (:symmetric, :symmetric)),
v = (; x = (:dirichlet, :symmetric), y = (:pressure, :pressure)),
)
# A 2D grid is a Cartesian product of two vectors
x = LinRange(0.0, 10.0, 200)
y = LinRange(-2.0, 2.0, 80)
# Actuator body force: A thrust coefficient `Cₜ` distributed over a thin rectangle
xc, yc = 2.0, 0.0 # Disk center
D = 1.0 # Disk diameter
δ = 0.11 # Disk thickness
Cₜ = 5e-4 # Thrust coefficient
cₜ = Cₜ / (D * δ)
inside(x, y) = abs(x - xc) ≤ δ / 2 && abs(y - yc) ≤ D / 2
bodyforce_u(x, y) = -cₜ * inside(x, y)
bodyforce_v(x, y) = 0.0
# Build setup and assemble operators
setup = Setup(
x,
y;
viscosity_model,
u_bc,
v_bc,
dudt_bc,
dvdt_bc,
bc_type,
bodyforce_u,
bodyforce_v,
);
# Time interval
t_start, t_end = tlims = (0.0, 12.0)
# Initial conditions (extend inflow)
initial_velocity_u(x, y) = 1.0
initial_velocity_v(x, y) = 0.0
initial_pressure(x, y) = 0.0
V₀, p₀ = create_initial_conditions(
setup,
t_start;
initial_velocity_u,
initial_velocity_v,
initial_pressure,
);
problem = UnsteadyProblem(setup, V₀, p₀, tlims)
V, p = solve_animate(
problem,
RK44P2();
Δt = 0.05,
filename = "vorticity.gif",
)
The resulting animation is shown below.