-
Notifications
You must be signed in to change notification settings - Fork 42
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Support non-interpolating quantile definitions #187
Open
nalimilan
wants to merge
1
commit into
master
Choose a base branch
from
nl/quantile
base: master
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Changes from all commits
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -854,8 +854,12 @@ median!(v::AbstractArray) = median!(vec(v)) | |
median(itr) | ||
|
||
Compute the median of all elements in a collection. | ||
For an even number of elements no exact median element exists, so the result is | ||
equivalent to calculating mean of two median elements. | ||
|
||
For an even number of elements no exact median element exists, so the | ||
mean of two median elements is returned. | ||
This is equivalent to [`quantile(itr, 0.5, type=2)`](@ref). | ||
Use `quantile` with `type=1` or `type=3` to compute median of types | ||
with limited or no support for arithmetic operations, such as `Date`. | ||
|
||
!!! note | ||
If `itr` contains `NaN` or [`missing`](@ref) values, the result is also | ||
|
@@ -905,31 +909,44 @@ _median(v::AbstractArray{T}, ::Colon) where {T} = median!(copyto!(Array{T,1}(und | |
median(r::AbstractRange{<:Real}) = mean(r) | ||
|
||
""" | ||
quantile!([q::AbstractArray, ] v::AbstractVector, p; sorted=false, alpha::Real=1.0, beta::Real=alpha) | ||
quantile!([q::AbstractArray, ] v::AbstractVector, p; | ||
sorted=false, type::Integer=7, alpha::Real=1.0, beta::Real=alpha) | ||
|
||
Compute the quantile(s) of a vector `v` at a specified probability or vector or tuple of | ||
probabilities `p` on the interval [0,1]. If `p` is a vector, an optional | ||
output array `q` may also be specified. (If not provided, a new output array is created.) | ||
The keyword argument `sorted` indicates whether `v` can be assumed to be sorted; if | ||
`false` (the default), then the elements of `v` will be partially sorted in-place. | ||
|
||
Samples quantile are defined by `Q(p) = (1-γ)*x[j] + γ*x[j+1]`, | ||
where `x[j]` is the j-th order statistic of `v`, `j = floor(n*p + m)`, | ||
`m = alpha + p*(1 - alpha - beta)` and `γ = n*p + m - j`. | ||
|
||
By default (`alpha = beta = 1`), quantiles are computed via linear interpolation between the points | ||
`((k-1)/(n-1), x[k])`, for `k = 1:n` where `n = length(v)`. This corresponds to Definition 7 | ||
By default (`type=7`, or equivalently `alpha = beta = 1`), | ||
quantiles are computed via linear interpolation between the points | ||
`((k-1)/(n-1), x[k])`, for `k = 1:n` where `x[j]` is the j-th order statistic of `itr` | ||
and `n = length(itr)`. This corresponds to Definition 7 | ||
of Hyndman and Fan (1996), and is the same as the R and NumPy default. | ||
|
||
The keyword arguments `alpha` and `beta` correspond to the same parameters in Hyndman and Fan, | ||
setting them to different values allows to calculate quantiles with any of the methods 4-9 | ||
defined in this paper: | ||
- Def. 4: `alpha=0`, `beta=1` | ||
- Def. 5: `alpha=0.5`, `beta=0.5` (MATLAB default) | ||
- Def. 6: `alpha=0`, `beta=0` (Excel `PERCENTILE.EXC`, Python default, Stata `altdef`) | ||
- Def. 7: `alpha=1`, `beta=1` (Julia, R and NumPy default, Excel `PERCENTILE` and `PERCENTILE.INC`, Python `'inclusive'`) | ||
- Def. 8: `alpha=1/3`, `beta=1/3` | ||
- Def. 9: `alpha=3/8`, `beta=3/8` | ||
The keyword argument `type` can be used to choose among the 9 definitions | ||
in Hyndman and Fan (1996). Alternatively, `alpha` and `beta` allow reproducing | ||
any of the methods 4-9 defined in this paper. It is not allowed to specify both | ||
kinds of arguments at the same time. | ||
|
||
Definitions 1 to 3 are discontinuous: | ||
- `type=1`: `Q(p) = x[ceil(n*p)]` (SAS-3) | ||
- `type=2`: `Q(p) = middle(x[ceil(n*p), floor(n*p + 1)])` (SAS-5, Stata) | ||
- `type=3`: `Q(p) = x[round(n*p)]` (SAS-2) | ||
|
||
Definitions 4 to 9 use linear interpolation between consecutive order statistics. | ||
Samples quantiles are defined by `Q(p) = (1-γ)*x[j] + γ*x[j+1]`, | ||
where `j = floor(n*p + m)`, `m = alpha + p*(1 - alpha - beta)` and `γ = n*p + m - j`. | ||
- `type=4`: `alpha=0`, `beta=1` (SAS-1) | ||
- `type=5`: `alpha=0.5`, `beta=0.5` (MATLAB default) | ||
- `type=6`: `alpha=0`, `beta=0` (Excel `PERCENTILE.EXC`, Python default, Stata `altdef`) | ||
- `type=7`: `alpha=1`, `beta=1` (Julia, R and NumPy default, Excel `PERCENTILE` and | ||
`PERCENTILE.INC`, Python `'inclusive'`) | ||
- `type=8`: `alpha=1/3`, `beta=1/3` | ||
- `type=9`: `alpha=3/8`, `beta=3/8` | ||
|
||
Definitions 1 and 3 have the advantage that they work with types that do not support | ||
all arithmetic operations, such as `Date`. | ||
|
||
!!! note | ||
An `ArgumentError` is thrown if `v` contains `NaN` or [`missing`](@ref) values. | ||
|
@@ -938,7 +955,8 @@ defined in this paper: | |
- Hyndman, R.J and Fan, Y. (1996) "Sample Quantiles in Statistical Packages", | ||
*The American Statistician*, Vol. 50, No. 4, pp. 361-365 | ||
|
||
- [Quantile on Wikipedia](https://en.wikipedia.org/wiki/Quantile) details the different quantile definitions | ||
- [Quantile on Wikipedia](https://en.wikipedia.org/wiki/Quantile) details | ||
the different quantile definitions | ||
|
||
# Examples | ||
```jldoctest | ||
|
@@ -968,7 +986,8 @@ julia> y | |
``` | ||
""" | ||
function quantile!(q::AbstractArray, v::AbstractVector, p::AbstractArray; | ||
sorted::Bool=false, alpha::Real=1.0, beta::Real=alpha) | ||
sorted::Bool=false, type::Union{Integer, Nothing}=nothing, | ||
alpha::Union{Real, Nothing}=nothing, beta::Union{Real, Nothing}=alpha) | ||
require_one_based_indexing(q, v, p) | ||
if size(p) != size(q) | ||
throw(DimensionMismatch("size of p, $(size(p)), must equal size of q, $(size(q))")) | ||
|
@@ -979,29 +998,34 @@ function quantile!(q::AbstractArray, v::AbstractVector, p::AbstractArray; | |
_quantilesort!(v, sorted, minp, maxp) | ||
|
||
for (i, j) in zip(eachindex(p), eachindex(q)) | ||
@inbounds q[j] = _quantile(v,p[i], alpha=alpha, beta=beta) | ||
@inbounds q[j] = _quantile(v,p[i], type=type, alpha=alpha, beta=beta) | ||
end | ||
return q | ||
end | ||
|
||
function quantile!(v::AbstractVector, p::Union{AbstractArray, Tuple{Vararg{Real}}}; | ||
sorted::Bool=false, alpha::Real=1., beta::Real=alpha) | ||
sorted::Bool=false, type::Union{Integer, Nothing}=nothing, | ||
alpha::Union{Real, Nothing}=nothing, beta::Union{Real, Nothing}=alpha) | ||
if !isempty(p) | ||
minp, maxp = extrema(p) | ||
_quantilesort!(v, sorted, minp, maxp) | ||
end | ||
return map(x->_quantile(v, x, alpha=alpha, beta=beta), p) | ||
return map(x->_quantile(v, x, type=type, alpha=alpha, beta=beta), p) | ||
end | ||
quantile!(a::AbstractArray, p::Union{AbstractArray,Tuple{Vararg{Real}}}; | ||
sorted::Bool=false, alpha::Real=1.0, beta::Real=alpha) = | ||
quantile!(vec(a), p, sorted=sorted, alpha=alpha, beta=alpha) | ||
sorted::Bool=false, type::Union{Integer, Nothing}=nothing, | ||
alpha::Union{Real, Nothing}=nothing, beta::Union{Real, Nothing}=alpha) = | ||
quantile!(vec(a), p, sorted=sorted, type=type, alpha=alpha, beta=alpha) | ||
|
||
quantile!(q::AbstractArray, a::AbstractArray, p::Union{AbstractArray,Tuple{Vararg{Real}}}; | ||
sorted::Bool=false, alpha::Real=1.0, beta::Real=alpha) = | ||
quantile!(q, vec(a), p, sorted=sorted, alpha=alpha, beta=alpha) | ||
sorted::Bool=false, type::Union{Integer, Nothing}=nothing, | ||
alpha::Union{Real, Nothing}=nothing, beta::Union{Real, Nothing}=alpha) = | ||
quantile!(q, vec(a), p, sorted=sorted, type=type, alpha=alpha, beta=alpha) | ||
|
||
quantile!(v::AbstractVector, p::Real; sorted::Bool=false, alpha::Real=1.0, beta::Real=alpha) = | ||
_quantile(_quantilesort!(v, sorted, p, p), p, alpha=alpha, beta=beta) | ||
quantile!(v::AbstractVector, p::Real; | ||
sorted::Bool=false, type::Union{Integer, Nothing}=nothing, | ||
alpha::Union{Real, Nothing}=nothing, beta::Union{Real, Nothing}=alpha) = | ||
_quantile(_quantilesort!(v, sorted, p, p), p, type=type, alpha=alpha, beta=beta) | ||
|
||
# Function to perform partial sort of v for quantiles in given range | ||
function _quantilesort!(v::AbstractVector, sorted::Bool, minp::Real, maxp::Real) | ||
|
@@ -1024,65 +1048,112 @@ function _quantilesort!(v::AbstractVector, sorted::Bool, minp::Real, maxp::Real) | |
end | ||
|
||
# Core quantile lookup function: assumes `v` sorted | ||
@inline function _quantile(v::AbstractVector, p::Real; alpha::Real=1.0, beta::Real=alpha) | ||
@inline function _quantile(v::AbstractVector, p::Real; | ||
type::Union{Integer, Nothing}, | ||
alpha::Union{Real, Nothing}, beta::Union{Real, Nothing}) | ||
0 <= p <= 1 || throw(ArgumentError("input probability out of [0,1] range")) | ||
0 <= alpha <= 1 || throw(ArgumentError("alpha parameter out of [0,1] range")) | ||
0 <= beta <= 1 || throw(ArgumentError("beta parameter out of [0,1] range")) | ||
require_one_based_indexing(v) | ||
|
||
if alpha !== nothing || beta !== nothing | ||
type === nothing || | ||
throw(ArgumentError("it is not allowed to pass both `type` and `alpha` or `beta`")) | ||
|
||
alpha === nothing && (alpha = 1.0) | ||
beta === nothing && (beta = alpha) | ||
|
||
0 <= alpha <= 1 || throw(ArgumentError("alpha parameter out of [0,1] range")) | ||
0 <= beta <= 1 || throw(ArgumentError("beta parameter out of [0,1] range")) | ||
elseif type === nothing | ||
alpha = beta = 1.0 | ||
elseif 4 <= type <= 9 | ||
alpha = (0.0, 1/2, 0.0, 1.0, 1/3, 3/8)[type-3] | ||
beta = (1.0, 1/2, 0.0, 1.0, 1/3, 3/8)[type-3] | ||
elseif !(1 <= type <= 3) | ||
throw(ArgumentError("`type` must be between 1 and 9")) | ||
end | ||
|
||
n = length(v) | ||
|
||
@assert n > 0 # this case should never happen here | ||
|
||
m = alpha + p * (one(alpha) - alpha - beta) | ||
# Using fma here avoids some rounding errors when aleph is an integer | ||
# The use of oftype supresses the promotion caused by alpha and beta | ||
aleph = fma(n, p, oftype(p, m)) | ||
j = clamp(trunc(Int, aleph), 1, n - 1) | ||
γ = clamp(aleph - j, 0, 1) | ||
|
||
if n == 1 | ||
a = v[1] | ||
b = v[1] | ||
if type == 1 | ||
return v[clamp(ceil(Int, n*p), 1, n)] | ||
elseif type == 2 | ||
i = clamp(ceil(Int, n*p), 1, n) | ||
j = clamp(floor(Int, n*p + 1), 1, n) | ||
return middle(v[i], v[j]) | ||
elseif type == 3 | ||
return v[clamp(round(Int, n*p), 1, n)] | ||
else | ||
a = v[j] | ||
b = v[j + 1] | ||
end | ||
m = alpha + p * (one(alpha) - alpha - beta) | ||
# Using fma here avoids some rounding errors when aleph is an integer | ||
# The use of oftype supresses the promotion caused by alpha and beta | ||
aleph = fma(n, p, oftype(p, m)) | ||
j = clamp(trunc(Int, aleph), 1, n - 1) | ||
γ = clamp(aleph - j, 0, 1) | ||
|
||
if n == 1 | ||
a = v[1] | ||
b = v[1] | ||
else | ||
a = v[j] | ||
b = v[j + 1] | ||
end | ||
|
||
# When a ≉ b, b-a may overflow | ||
# When a ≈ b, (1-γ)*a + γ*b may not be increasing with γ due to rounding | ||
if isfinite(a) && isfinite(b) && | ||
(!(a isa Number) || !(b isa Number) || a ≈ b) | ||
return a + γ*(b-a) | ||
else | ||
return (1-γ)*a + γ*b | ||
try | ||
# When a ≉ b, b-a may overflow | ||
# When a ≈ b, (1-γ)*a + γ*b may not be increasing with γ due to rounding | ||
if isfinite(a) && isfinite(b) && | ||
(!(a isa Number) || !(b isa Number) || a ≈ b) | ||
return a + γ*(b-a) | ||
else | ||
return (1-γ)*a + γ*b | ||
end | ||
catch e | ||
throw(ArgumentError("error when computing quantile between two data values. " * | ||
"Pass `type=1` or `type=3` to compute quantiles on types with " * | ||
"no or limited support for arithmetic operations.")) | ||
end | ||
end | ||
end | ||
|
||
""" | ||
quantile(itr, p; sorted=false, alpha::Real=1.0, beta::Real=alpha) | ||
quantile(itr, p; | ||
sorted=false, type::Integer=7, alpha::Real=1.0, beta::Real=alpha) | ||
|
||
Compute the quantile(s) of a collection `itr` at a specified probability or vector or tuple of | ||
probabilities `p` on the interval [0,1]. The keyword argument `sorted` indicates whether | ||
`itr` can be assumed to be sorted. | ||
|
||
Samples quantile are defined by `Q(p) = (1-γ)*x[j] + γ*x[j+1]`, | ||
where `x[j]` is the j-th order statistic of `itr`, `j = floor(n*p + m)`, | ||
`m = alpha + p*(1 - alpha - beta)` and `γ = n*p + m - j`. | ||
|
||
By default (`alpha = beta = 1`), quantiles are computed via linear interpolation between the points | ||
`((k-1)/(n-1), x[k])`, for `k = 1:n` where `n = length(itr)`. This corresponds to Definition 7 | ||
By default (`type=7`, or equivalently `alpha = beta = 1`), | ||
quantiles are computed via linear interpolation between the points | ||
`((k-1)/(n-1), x[k])`, for `k = 1:n` where `x[j]` is the j-th order statistic of `itr` | ||
and `n = length(itr)`. This corresponds to Definition 7 | ||
of Hyndman and Fan (1996), and is the same as the R and NumPy default. | ||
|
||
The keyword arguments `alpha` and `beta` correspond to the same parameters in Hyndman and Fan, | ||
setting them to different values allows to calculate quantiles with any of the methods 4-9 | ||
defined in this paper: | ||
- Def. 4: `alpha=0`, `beta=1` | ||
- Def. 5: `alpha=0.5`, `beta=0.5` (MATLAB default) | ||
- Def. 6: `alpha=0`, `beta=0` (Excel `PERCENTILE.EXC`, Python default, Stata `altdef`) | ||
- Def. 7: `alpha=1`, `beta=1` (Julia, R and NumPy default, Excel `PERCENTILE` and `PERCENTILE.INC`, Python `'inclusive'`) | ||
- Def. 8: `alpha=1/3`, `beta=1/3` | ||
- Def. 9: `alpha=3/8`, `beta=3/8` | ||
The keyword argument `type` can be used to choose among the 9 definitions | ||
in Hyndman and Fan (1996). Alternatively, `alpha` and `beta` allow reproducing | ||
any of the methods 4-9 defined in this paper. It is not allowed to specify both | ||
kinds of arguments at the same time. | ||
|
||
Definitions 1 to 3 are discontinuous: | ||
- `type=1`: `Q(p) = x[ceil(n*p)]` (SAS-3) | ||
- `type=2`: `Q(p) = middle(x[ceil(n*p), floor(n*p + 1)])` (SAS-5, Stata) | ||
- `type=3`: `Q(p) = x[round(n*p)]` (SAS-2) | ||
Comment on lines
+1140
to
+1142
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Here I have even simplified formulas a bit more and don't even mention clamping at the extremes. Maybe that's too much and it should at least be mentioned somewhere (e.g. in the sentence common to the three types)? |
||
|
||
Definitions 4 to 9 use linear interpolation between consecutive order statistics. | ||
Samples quantiles are defined by `Q(p) = (1-γ)*x[j] + γ*x[j+1]`, | ||
where `j = floor(n*p + m)`, `m = alpha + p*(1 - alpha - beta)` and `γ = n*p + m - j`. | ||
- `type=4`: `alpha=0`, `beta=1` (SAS-1) | ||
- `type=5`: `alpha=0.5`, `beta=0.5` (MATLAB default) | ||
- `type=6`: `alpha=0`, `beta=0` (Excel `PERCENTILE.EXC`, Python default, Stata `altdef`) | ||
- `type=7`: `alpha=1`, `beta=1` (Julia, R and NumPy default, Excel `PERCENTILE` and | ||
`PERCENTILE.INC`, Python `'inclusive'`) | ||
- `type=8`: `alpha=1/3`, `beta=1/3` | ||
- `type=9`: `alpha=3/8`, `beta=3/8` | ||
|
||
Definitions 1 and 3 have the advantage that they work with types that do not support | ||
all arithmetic operations, such as `Date`. | ||
|
||
!!! note | ||
An `ArgumentError` is thrown if `v` contains `NaN` or [`missing`](@ref) values. | ||
|
@@ -1093,7 +1164,8 @@ defined in this paper: | |
- Hyndman, R.J and Fan, Y. (1996) "Sample Quantiles in Statistical Packages", | ||
*The American Statistician*, Vol. 50, No. 4, pp. 361-365 | ||
|
||
- [Quantile on Wikipedia](https://en.wikipedia.org/wiki/Quantile) details the different quantile definitions | ||
- [Quantile on Wikipedia](https://en.wikipedia.org/wiki/Quantile) details | ||
the different quantile definitions | ||
|
||
# Examples | ||
```jldoctest | ||
|
@@ -1112,11 +1184,16 @@ julia> quantile(skipmissing([1, 10, missing]), 0.5) | |
5.5 | ||
``` | ||
""" | ||
quantile(itr, p; sorted::Bool=false, alpha::Real=1.0, beta::Real=alpha) = | ||
quantile!(collect(itr), p, sorted=sorted, alpha=alpha, beta=beta) | ||
|
||
quantile(v::AbstractVector, p; sorted::Bool=false, alpha::Real=1.0, beta::Real=alpha) = | ||
quantile!(sorted ? v : Base.copymutable(v), p; sorted=sorted, alpha=alpha, beta=beta) | ||
quantile(itr, p; sorted::Bool=false, | ||
type::Union{Integer, Nothing}=nothing, | ||
alpha::Union{Real, Nothing}=nothing, beta::Union{Real, Nothing}=alpha) = | ||
quantile!(collect(itr), p, sorted=sorted, type=type, alpha=alpha, beta=beta) | ||
|
||
quantile(v::AbstractVector, p; | ||
sorted::Bool=false, type::Union{Integer, Nothing}=nothing, | ||
alpha::Union{Real, Nothing}=nothing, beta::Union{Real, Nothing}=alpha) = | ||
quantile!(sorted ? v : Base.copymutable(v), p; | ||
sorted=sorted, type=type, alpha=alpha, beta=beta) | ||
|
||
# If package extensions are not supported in this Julia version | ||
if !isdefined(Base, :get_extension) | ||
|
Oops, something went wrong.
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I have used simplified formulas specific to each case, as I find code resulting from using the single general formula from the Hyndman & Fan paper very hard to grasp without any advantage. I hope I didn't introduce mistakes, especially in corner cases. Please suggest things to test if you can find some that are not covered.