Skip to content

Commit

Permalink
Adapt to Documenter v1 (#444)
Browse files Browse the repository at this point in the history
* Adapt to Documenter v1
  • Loading branch information
dkarrasch authored Oct 10, 2023
1 parent 034d234 commit e86b148
Show file tree
Hide file tree
Showing 4 changed files with 12 additions and 6 deletions.
3 changes: 3 additions & 0 deletions docs/Project.toml
Original file line number Diff line number Diff line change
@@ -1,2 +1,5 @@
[deps]
Documenter = "e30172f5-a6a5-5a46-863b-614d45cd2de4"

[compat]
Documenter = "1"
3 changes: 1 addition & 2 deletions docs/make.jl
Original file line number Diff line number Diff line change
Expand Up @@ -10,8 +10,7 @@ makedocs(
"SparseArrays" => "index.md",
"Sparse Linear Algebra" => "solvers.md",
];
# strict = true,
strict = Symbol[:doctest],
warnonly = [:missing_docs, :cross_references],
)

deploydocs(repo = "github.com/JuliaSparse/SparseArrays.jl.git")
5 changes: 4 additions & 1 deletion docs/src/solvers.md
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,10 @@ Sparse matrix solvers call functions from [SuiteSparse](http://suitesparse.com).

Other solvers such as [Pardiso.jl](https://github.com/JuliaSparse/Pardiso.jl/) are available as external packages. [Arpack.jl](https://julialinearalgebra.github.io/Arpack.jl/stable/) provides `eigs` and `svds` for iterative solution of eigensystems and singular value decompositions.

These factorizations are described in more detail in [`Linear Algebra`](https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/) section of the manual:
These factorizations are described in more detail in the
[`Linear Algebra`](https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/)
section of the manual:

1. [`cholesky`](@ref SparseArrays.CHOLMOD.cholesky)
2. [`ldlt`](@ref SparseArrays.CHOLMOD.ldlt)
3. [`lu`](@ref SparseArrays.UMFPACK.lu)
Expand Down
7 changes: 4 additions & 3 deletions src/solvers/cholmod.jl
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,8 @@ using LinearAlgebra
using LinearAlgebra: RealHermSymComplexHerm, AdjOrTrans
import LinearAlgebra: (\), AdjointFactorization,
cholesky, cholesky!, det, diag, ishermitian, isposdef,
issuccess, issymmetric, ldlt, ldlt!, logdet, lowrankdowndate!
issuccess, issymmetric, ldlt, ldlt!, logdet,
lowrankdowndate, lowrankdowndate!, lowrankupdate, lowrankupdate!

using SparseArrays
using SparseArrays: getcolptr, AbstractSparseVecOrMat
Expand Down Expand Up @@ -1554,7 +1555,7 @@ factor will be `L*L' == P*A*P' + C'*C`
`update`: `Cint(1)` for `A + CC'`, `Cint(0)` for `A - CC'`
"""
lowrankdowndate!
lowrankupdowndate!

#Helper functions for rank updates
lowrank_reorder(V::AbstractArray,p) = Sparse(sparse(V[p,:]))
Expand Down Expand Up @@ -1603,7 +1604,7 @@ lowrankupdate(F::Factor{Tv}, V::AbstractArray{Tv}) where {Tv<:VTypes} =
lowrankupdate!(copy(F), V)

"""
lowrankupdate(F::CHOLMOD.Factor, C::AbstractArray) -> FF::CHOLMOD.Factor
lowrankdowndate(F::CHOLMOD.Factor, C::AbstractArray) -> FF::CHOLMOD.Factor
Get an `LDLt` Factorization of `A + C*C'` given an `LDLt` or `LLt` factorization `F` of `A`.
Expand Down

0 comments on commit e86b148

Please sign in to comment.