Skip to content

JuliaSIMD/Polyester.jl

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Polyester

Stable Dev CI CI-Nightly Coverage

Polyester.jl provides low-overhead multithreading in Julia. The primary API is @batch, which can be used to parallelize for-loops (similar to @threads).

Polyester implements static scheduling (c.f. @threads :static) and has minimal overhead because it manages and re-uses a dedicated set of Julia tasks. This can lead to (great) speedups compared to other multithreading variants (see Benchmark below).

Basic usage example

using Polyester

function axpy_polyester!(y, a, x)
    @batch for i in eachindex(y,x)
        y[i] = a * x[i] + y[i]
    end
end

a = 3.141
x = rand(10_000)
y = rand(10_000)
axpy_polyester!(y, a, x)

Important Notes

  • Polyester.@batch moves arrays to threads by turning them into StrideArraysCore.PtrArrays. This means that under an @batch slices will create views by default(!). You may want to start Julia with --check-bounds=yes while debugging.

  • Polyester uses the regular Julia threads. The total number of threads is still governed by --threads or JULIA_NUM_THREADS (check with Threads.nthreads()).

  • Polyester does not pin Julia threads to CPU-cores/threads. You can control how many "Polyester tasks" you want to use (see below). But to ensure that these tasks are running on specific CPU-cores/threads, you need to use a tool like ThreadPinning.jl.

Simple benchmark

Let's consider a basic axpy kernel.

using Polyester: @batch
using Base.Threads: @threads
using LinearAlgebra
using BenchmarkTools

# pinning threads for good measure
using ThreadPinning
pinthreads(:cores)

# Single threaded.
function axpy_serial!(y, a, x)
    for i in eachindex(y,x)
        @inbounds y[i] = a * x[i] + y[i]
    end
end

# Multithreaded with @batch
function axpy_batch!(y, a, x)
    @batch for i in eachindex(y,x)
        @inbounds y[i] = a * x[i] + y[i]
    end
end

# Multithreaded with @threads (default scheduling)
function axpy_atthreads!(y, a, x)
    @threads for i in eachindex(y,x)
        @inbounds y[i] = a * x[i] + y[i]
    end
end

# Multithreaded with @threads :static
function axpy_atthreads_static!(y, a, x)
    @threads :static for i in eachindex(y,x)
        @inbounds y[i] = a * x[i] + y[i]
    end
end

y = rand(10_000);
x = rand(10_000);
@benchmark axpy_serial!($y, eps(), $x)
@benchmark axpy_batch!($y, eps(), $x)
@benchmark axpy_atthreads!($y, eps(), $x)
@benchmark axpy_atthreads_static!($y, eps(), $x)
@benchmark axpy!(eps(), $x, $y) # BLAS built-in axpy
VERSION

With 8 Julia threads (pinned to different CPU-cores) I find the following results.

julia> @benchmark axpy_serial!($y, eps(), $x)
BenchmarkTools.Trial: 10000 samples with 10 evaluations.
 Range (min  max):  1.430 μs   2.226 μs  ┊ GC (min  max): 0.00%  0.00%
 Time  (median):     1.434 μs              ┊ GC (median):    0.00%
 Time  (mean ± σ):   1.438 μs ± 23.775 ns  ┊ GC (mean ± σ):  0.00% ± 0.00%

  ▂█▃                                                         
  ███▆▆▄▂▁▂▂▁▁▂▁▁▁▁▁▂▁▂▁▁▁▁▁▁▂▂▁▁▂▁▂▁▁▁▁▂▂▂▂▂▂▁▁▁▁▁▁▁▁▁▁▂▂▂▂ ▂
  1.43 μs        Histogram: frequency by time        1.55 μs <

 Memory estimate: 0 bytes, allocs estimate: 0.

julia> @benchmark axpy_batch!($y, eps(), $x)
BenchmarkTools.Trial: 10000 samples with 69 evaluations.
 Range (min  max):  853.623 ns   2.361 μs  ┊ GC (min  max): 0.00%  0.00%
 Time  (median):     885.507 ns              ┊ GC (median):    0.00%
 Time  (mean ± σ):   889.184 ns ± 25.306 ns  ┊ GC (mean ± σ):  0.00% ± 0.00%

              ▂▅▇██▆▆▄▁                                         
  ▁▁▁▁▁▁▂▂▃▄▆██████████▇▅▄▃▂▂▂▂▂▂▂▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▂▂▁▁ ▃
  854 ns          Histogram: frequency by time          968 ns <

 Memory estimate: 0 bytes, allocs estimate: 0.

julia> @benchmark axpy_atthreads!($y, eps(), $x)
BenchmarkTools.Trial: 10000 samples with 7 evaluations.
 Range (min  max):  4.437 μs  388.400 μs  ┊ GC (min  max): 0.00%  97.02%
 Time  (median):     5.077 μs               ┊ GC (median):    0.00%
 Time  (mean ± σ):   5.560 μs ±   9.340 μs  ┊ GC (mean ± σ):  4.03% ±  2.37%

         ▁▄▅██▇▆▃▁                                             
  ▁▁▁▂▃▅▆█████████▆▅▄▄▃▂▂▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▂▂▂▂▂▃▂▃▃▃▂▂▂▂▂▂▁ ▃
  4.44 μs         Histogram: frequency by time        7.44 μs <

 Memory estimate: 4.54 KiB, allocs estimate: 48.

julia> @benchmark axpy_atthreads_static!($y, eps(), $x)
BenchmarkTools.Trial: 10000 samples with 8 evaluations.
 Range (min  max):  3.078 μs  357.969 μs  ┊ GC (min  max): 0.00%  96.65%
 Time  (median):     3.618 μs               ┊ GC (median):    0.00%
 Time  (mean ± σ):   4.102 μs ±   9.118 μs  ┊ GC (mean ± σ):  5.75% ±  2.57%

         ▃▆█▆▅▂                                                
  ▂▂▂▃▄▆███████▇▅▄▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▁▂▂▂▂▂▂▂▂▃▂▃▃▃▃▃▃▃▃▃▃▃▃▂▂▂▂ ▃
  3.08 μs         Histogram: frequency by time        6.12 μs <

 Memory estimate: 4.56 KiB, allocs estimate: 48.

julia> @benchmark axpy!(eps(), $x, $y) # BLAS built-in axpy
BenchmarkTools.Trial: 10000 samples with 10 evaluations.
 Range (min  max):  1.438 μs   9.397 μs  ┊ GC (min  max): 0.00%  0.00%
 Time  (median):     1.441 μs              ┊ GC (median):    0.00%
 Time  (mean ± σ):   1.445 μs ± 83.630 ns  ┊ GC (mean ± σ):  0.00% ± 0.00%

   █                                                          
  ▄██▅▆▂▂▁▁▂▁▁▂▁▁▁▁▁▂▂▁▁▁▂▁▁▂▁▁▁▁▁▁▁▂▂▁▁▁▁▂▂▁▂▂▁▁▁▁▁▁▁▁▂▂▂▂▂ ▂
  1.44 μs        Histogram: frequency by time        1.55 μs <

 Memory estimate: 0 bytes, allocs estimate: 0.

julia> VERSION
v"1.9.3"

With only 10_000 elements, this simple AXPY computation can't afford the overhead of multithreading via @threads (for either scheduling scheme). In fact, the latter just slows the computation down. Similarly, the built-in BLAS axpy! doesn't provide any multithreading speedup (it likely falls back to a serial variant). Only with Polyester's @batch, which has minimal overhead, do we get a decent(!) speedup.

Keyword options for @batch

per=cores / per=threads

The per keyword argument can be used to limit the number of Julia threads to be used by a @batch block. Specifically, per=core will use only max(num_cores, nthreads()) many of the Julia threads.

Note that @batch defaults to per=cores. This is because LoopVectorization.jl currently only uses up to 1 thread per physical core, and switching the number of threads incurs some overhead.

minbatch

The minbatch argument lets us choose a minimum number of iterations per thread. That is, minbatch=n means it'll use at most number_loop_iterations ÷ n threads.

For our benchmark example above with 10000 iterations, setting minbatch=2500 will lead to @batch using only 4 (of 8) threads. This is still faster than the serial version but slower than plain @batch, which uses all 8 available threads.

function axpy_minbatch!(y, a, x)
    @batch minbatch=2500 for i in eachindex(y,x)
        @inbounds y[i] = a * x[i] + y[i]
    end
end

@benchmark axpy_minbatch!($y, $eps(), $x)
julia> @benchmark axpy_minbatch!($y, $eps(), $x)
BenchmarkTools.Trial: 10000 samples with 10 evaluations.
 Range (min  max):  1.072 μs   5.085 μs  ┊ GC (min  max): 0.00%  0.00%
 Time  (median):     1.114 μs              ┊ GC (median):    0.00%
 Time  (mean ± σ):   1.126 μs ± 72.510 ns  ┊ GC (mean ± σ):  0.00% ± 0.00%

       ▂▅██▅▃                                                 
  ▁▁▂▃▆███████▅▃▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁ ▂
  1.07 μs        Histogram: frequency by time        1.36 μs <

 Memory estimate: 0 bytes, allocs estimate: 0.

Local per-thread storage (threadlocal)

You also can define local storage for each thread, providing a vector containing each of the local storages at the end.

julia> let
           @batch threadlocal=rand(10:99) for i in 0:9
               println("index $i, thread $(Threads.threadid()), local storage $threadlocal")
               threadlocal += 1
           end
           println(threadlocal)
       end

index 8, thread 1, local storage 30
index 3, thread 3, local storage 49
index 9, thread 1, local storage 31
index 6, thread 4, local storage 33
index 0, thread 2, local storage 14
index 4, thread 3, local storage 50
index 7, thread 4, local storage 34
index 1, thread 2, local storage 15
index 5, thread 3, local storage 51
index 2, thread 2, local storage 16
Any[32, 17, 52, 35]

Optionally, a type can be specified for the thread-local storage:

julia> let
           @batch threadlocal=rand(10:99)::Float16 for i in 0:9
           end
           println(threadlocal)
       end

Float16[83.0, 90.0, 27.0, 65.0]

reduction

The reduction keyword enables reduction of an already initialized isbits variable with certain supported associative operations (see docs), such that the transition from serialized code is as simple as adding the @batch macro. Contrary to threadlocal this does not incur any additional allocations

julia> function batch_reduction()
           y1 = 0
           y2 = 1
           @batch reduction=((+, y1), (*, y2)) for i in 1:9
               y1 += i
               y2 *= i
           end
           y1, y2
       end
julia> batch_reduction()
(45, 362880)
julia> @allocated batch_reduction()
0

Disabling Polyester threads

When running many repetitions of a Polyester-multithreaded function (e.g. in an embarrassingly parallel problem that repeatedly executes a small already Polyester-multithreaded function), it can be beneficial to disable Polyester (the inner multithreaded loop) and multithread only at the outer level (e.g. with Base.Threads). This can be done with the disable_polyester_threads context manager. In the expandable section below you can see examples with benchmarks.

It is best to call disable_polyester_threads only once, before any @thread uses happen, to avoid overhead. E.g. best to do it as:

disable_polyester_threads() do
    @threads for i in 1:n
        f()
    end
end

instead of doing it in the following unnecessarily slow manner:

@threads for i in 1:n # DO NOT DO THIS
    disable_polyester_threads() do # IT HAS UNNECESSARY OVERHEAD
        f()
    end
end
Benchmarks of nested multi-threading with Polyester
# Big inner problem, repeated only a few times

y = rand(10000000,4);
x = rand(size(y)...);

@btime inner($x,$y,1) # 57.456 ms (0 allocations: 0 bytes)
@btime inner_polyester($x,$y,1) # 7.456 ms (0 allocations: 0 bytes)
@btime inner_thread($x,$y,1) # 7.286 ms (49 allocations: 4.56 KiB)

@btime sequential_sequential($x,$y) # 229.513 ms (0 allocations: 0 bytes)
@btime sequential_polyester($x,$y) # 29.921 ms (0 allocations: 0 bytes)
@btime sequential_thread($x,$y) # 29.343 ms (196 allocations: 18.25 KiB)

@btime threads_of_polyester($x,$y) # 29.961 ms (42 allocations: 4.34 KiB)
# the following is a purposefully suboptimal way to disable threads
@btime threads_of_polyester_inner_disable($x,$y) # 55.397 ms (51 allocations: 4.62 KiB)
# the following is a good way to disable threads (the disable call happening once in the outer scope)
@btime Polyester.disable_polyester_threads() do; threads_of_polyester($x,$y) end; # 55.396 ms (47 allocations: 4.50 KiB)
@btime threads_of_sequential($x,$y) # 55.404 ms (48 allocations: 4.53 KiB)
@btime threads_of_thread($x,$y) # 29.187 ms (220 allocations: 22.03 KiB)

# Small inner problem, repeated many times

y = rand(1000,1000);
x = rand(size(y)...);

@btime inner($x,$y,1) # 3.390 μs (0 allocations: 0 bytes)
@btime inner_polyester($x,$y,1) # 785.714 ns (0 allocations: 0 bytes)
@btime inner_thread($x,$y,1) # 4.043 μs (48 allocations: 4.54 KiB)

@btime sequential_sequential($x,$y) # 5.720 ms (0 allocations: 0 bytes)
@btime sequential_polyester($x,$y) # 1.143 ms (0 allocations: 0 bytes)
@btime sequential_thread($x,$y) # 4.796 ms (50307 allocations: 4.50 MiB)

@btime threads_of_polyester($x,$y) # 1.165 ms (42 allocations: 4.34 KiB)
# the following is a purposefully suboptimal way to disable threads
@btime threads_of_polyester_inner_disable($x,$y) # 779.713 μs (1042 allocations: 35.59 KiB)
# the following is a good way to disable threads (the disable call happening once in the outer scope)
@btime Polyester.disable_polyester_threads() do; threads_of_polyester($x,$y) end; # 743.813 μs (48 allocations: 4.53 KiB)
@btime threads_of_sequential($x,$y) # 694.463 μs (45 allocations: 4.44 KiB)
@btime threads_of_thread($x,$y) # 2.288 ms (42058 allocations: 4.25 MiB)

# The tested functions
# All of these would be better implemented by just using @tturbo,
# but these suboptimal implementations serve as good test case for
# Polyster-vs-Base thread scheduling.

function inner(x,y,j)
    for i  axes(x,1)
        y[i,j] = sin(x[i,j])
    end
end

function inner_polyester(x,y,j)
    @batch for i  axes(x,1)
        y[i,j] = sin(x[i,j])
    end
end

function inner_thread(x,y,j)
    @threads for i  axes(x,1)
        y[i,j] = sin(x[i,j])
    end
end

function sequential_sequential(x,y)
    for j  axes(x,2)
        inner(x,y,j)
    end
end

function sequential_polyester(x,y)
    for j  axes(x,2)
        inner_polyester(x,y,j)
    end
end

function sequential_thread(x,y)
    for j  axes(x,2)
        inner_thread(x,y,j)
    end
end

function threads_of_polyester(x,y)
    @threads for j  axes(x,2)
        inner_polyester(x,y,j)
    end
end

function threads_of_polyester_inner_disable(x,y)
    # XXX This is a bad way to disable Polyester threads as
    # it causes unnecessary overhead for each @threads thread.
    # See the benchmarks above for a better way.
    @threads for j  axes(x,2)
        Polyester.disable_polyester_threads() do
            inner_polyester(x,y,j)
        end
    end
end

function threads_of_thread(x,y)
    @threads for j  axes(x,2)
        inner_thread(x,y,j)
    end
end

function threads_of_thread(x,y)
    @threads for j  axes(x,2)
        inner_thread(x,y,j)
    end
end

function threads_of_sequential(x,y)
    @threads for j  axes(x,2)
        inner(x,y,j)
    end
end

Benchmarks executed on:

Julia Version 1.9.3
Commit bed2cd540a1 (2023-08-24 14:43 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
  CPU: 128 × AMD EPYC 7V13 64-Core Processor
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-14.0.6 (ORCJIT, znver3)
  Threads: 8 on 128 virtual cores
Environment:
  JULIA_NUM_THREADS = 8