Skip to content

Commit

Permalink
build based on 7544aa2
Browse files Browse the repository at this point in the history
  • Loading branch information
Documenter.jl committed Mar 10, 2024
1 parent a680d5f commit 149de0c
Show file tree
Hide file tree
Showing 18 changed files with 19,814 additions and 19,759 deletions.
2 changes: 1 addition & 1 deletion dev/.documenter-siteinfo.json
Original file line number Diff line number Diff line change
@@ -1 +1 @@
{"documenter":{"julia_version":"1.10.2","generation_timestamp":"2024-03-10T11:57:58","documenter_version":"1.3.0"}}
{"documenter":{"julia_version":"1.10.2","generation_timestamp":"2024-03-10T12:12:25","documenter_version":"1.3.0"}}
26 changes: 13 additions & 13 deletions dev/api/index.html

Large diffs are not rendered by default.

8 changes: 4 additions & 4 deletions dev/concrete_features/index.html
Original file line number Diff line number Diff line change
Expand Up @@ -18,9 +18,9 @@
plot!([plot, ]x::AbstractVector, f::FiniteGP; ribbon_scale=1, kwargs...)</code></pre><p>Plot the predictive mean for the projection <code>f</code> of a Gaussian process and a ribbon of <code>ribbon_scale</code> standard deviations around it versus <code>x</code>.</p><div class="admonition is-info"><header class="admonition-header">Note</header><div class="admonition-body"><p>Make sure to load <a href="https://github.com/JuliaPlots/Plots.jl">Plots.jl</a> before you use this function.</p></div></div><p><strong>Examples</strong></p><p>Plot the mean and a ribbon of 3 standard deviations:</p><pre><code class="language-julia hljs">using Plots

gp = GP(SqExponentialKernel())
plot(gp(rand(5)); ribbon_scale=3)</code></pre></div><a class="docs-sourcelink" target="_blank" href="https://github.com/JuliaGaussianProcesses/AbstractGPs.jl/blob/ff7705e78a5aa91b8fa3fe3d738e6571ac02156e/src/util/plotting.jl#L18-L39">source</a></section></article><article class="docstring"><header><a class="docstring-article-toggle-button fa-solid fa-chevron-down" href="javascript:;" title="Collapse docstring"></a><a class="docstring-binding" id="RecipesBase.plot-Tuple{AbstractGPs.FiniteGP}" href="#RecipesBase.plot-Tuple{AbstractGPs.FiniteGP}"><code>RecipesBase.plot</code></a><span class="docstring-category">Method</span></header><section><div><pre><code class="language-julia hljs">plot(f::FiniteGP; kwargs...)
plot!([plot, ]f::FiniteGP; kwargs...)</code></pre><p>Plot the predictive mean and a ribbon around it for the projection <code>f</code> of a Gaussian process versus <code>f.x</code>.</p></div><a class="docs-sourcelink" target="_blank" href="https://github.com/JuliaGaussianProcesses/AbstractGPs.jl/blob/ff7705e78a5aa91b8fa3fe3d738e6571ac02156e/src/util/plotting.jl#L48-L54">source</a></section></article><article class="docstring"><header><a class="docstring-article-toggle-button fa-solid fa-chevron-down" href="javascript:;" title="Collapse docstring"></a><a class="docstring-binding" id="RecipesBase.plot-Tuple{AbstractVector, AbstractGPs.AbstractGP}" href="#RecipesBase.plot-Tuple{AbstractVector, AbstractGPs.AbstractGP}"><code>RecipesBase.plot</code></a><span class="docstring-category">Method</span></header><section><div><pre><code class="language-julia hljs">plot(x::AbstractVector, gp::AbstractGP; kwargs...)
plot!([plot, ]x::AbstractVector, gp::AbstractGP; kwargs...)</code></pre><p>Plot the predictive mean and a ribbon around it for the projection <code>gp(x)</code> of the Gaussian process <code>gp</code>.</p></div><a class="docs-sourcelink" target="_blank" href="https://github.com/JuliaGaussianProcesses/AbstractGPs.jl/blob/ff7705e78a5aa91b8fa3fe3d738e6571ac02156e/src/util/plotting.jl#L61-L67">source</a></section></article><article class="docstring"><header><a class="docstring-article-toggle-button fa-solid fa-chevron-down" href="javascript:;" title="Collapse docstring"></a><a class="docstring-binding" id="AbstractGPs.sampleplot" href="#AbstractGPs.sampleplot"><code>AbstractGPs.sampleplot</code></a><span class="docstring-category">Function</span></header><section><div><pre><code class="language-julia hljs">sampleplot([x::AbstractVector=f.x, ]f::FiniteGP; samples=1, kwargs...)</code></pre><p>Plot samples from the projection <code>f</code> of a Gaussian process versus <code>x</code>.</p><div class="admonition is-info"><header class="admonition-header">Note</header><div class="admonition-body"><p>Make sure to load <a href="https://github.com/JuliaPlots/Plots.jl">Plots.jl</a> before you use this function.</p></div></div><p>When plotting multiple samples, these are treated as a <em>single</em> series (i.e., only a single entry will be added to the legend when providing a <code>label</code>).</p><p><strong>Example</strong></p><pre><code class="language-julia hljs">using Plots
plot(gp(rand(5)); ribbon_scale=3)</code></pre></div><a class="docs-sourcelink" target="_blank" href="https://github.com/JuliaGaussianProcesses/AbstractGPs.jl/blob/7544aa2b0569a47899dbdbb19662784ff9198990/src/util/plotting.jl#L18-L39">source</a></section></article><article class="docstring"><header><a class="docstring-article-toggle-button fa-solid fa-chevron-down" href="javascript:;" title="Collapse docstring"></a><a class="docstring-binding" id="RecipesBase.plot-Tuple{AbstractGPs.FiniteGP}" href="#RecipesBase.plot-Tuple{AbstractGPs.FiniteGP}"><code>RecipesBase.plot</code></a><span class="docstring-category">Method</span></header><section><div><pre><code class="language-julia hljs">plot(f::FiniteGP; kwargs...)
plot!([plot, ]f::FiniteGP; kwargs...)</code></pre><p>Plot the predictive mean and a ribbon around it for the projection <code>f</code> of a Gaussian process versus <code>f.x</code>.</p></div><a class="docs-sourcelink" target="_blank" href="https://github.com/JuliaGaussianProcesses/AbstractGPs.jl/blob/7544aa2b0569a47899dbdbb19662784ff9198990/src/util/plotting.jl#L48-L54">source</a></section></article><article class="docstring"><header><a class="docstring-article-toggle-button fa-solid fa-chevron-down" href="javascript:;" title="Collapse docstring"></a><a class="docstring-binding" id="RecipesBase.plot-Tuple{AbstractVector, AbstractGPs.AbstractGP}" href="#RecipesBase.plot-Tuple{AbstractVector, AbstractGPs.AbstractGP}"><code>RecipesBase.plot</code></a><span class="docstring-category">Method</span></header><section><div><pre><code class="language-julia hljs">plot(x::AbstractVector, gp::AbstractGP; kwargs...)
plot!([plot, ]x::AbstractVector, gp::AbstractGP; kwargs...)</code></pre><p>Plot the predictive mean and a ribbon around it for the projection <code>gp(x)</code> of the Gaussian process <code>gp</code>.</p></div><a class="docs-sourcelink" target="_blank" href="https://github.com/JuliaGaussianProcesses/AbstractGPs.jl/blob/7544aa2b0569a47899dbdbb19662784ff9198990/src/util/plotting.jl#L61-L67">source</a></section></article><article class="docstring"><header><a class="docstring-article-toggle-button fa-solid fa-chevron-down" href="javascript:;" title="Collapse docstring"></a><a class="docstring-binding" id="AbstractGPs.sampleplot" href="#AbstractGPs.sampleplot"><code>AbstractGPs.sampleplot</code></a><span class="docstring-category">Function</span></header><section><div><pre><code class="language-julia hljs">sampleplot([x::AbstractVector=f.x, ]f::FiniteGP; samples=1, kwargs...)</code></pre><p>Plot samples from the projection <code>f</code> of a Gaussian process versus <code>x</code>.</p><div class="admonition is-info"><header class="admonition-header">Note</header><div class="admonition-body"><p>Make sure to load <a href="https://github.com/JuliaPlots/Plots.jl">Plots.jl</a> before you use this function.</p></div></div><p>When plotting multiple samples, these are treated as a <em>single</em> series (i.e., only a single entry will be added to the legend when providing a <code>label</code>).</p><p><strong>Example</strong></p><pre><code class="language-julia hljs">using Plots

gp = GP(SqExponentialKernel())
sampleplot(gp(rand(5)); samples=10, linealpha=1.0)</code></pre><p>The given example plots 10 samples from the projection of the GP <code>gp</code>. The <code>linealpha</code> is modified from default of 0.35 to 1.</p><hr/><pre><code class="nohighlight hljs">sampleplot(x::AbstractVector, gp::AbstractGP; samples=1, kwargs...)</code></pre><p>Plot samples from the finite projection <code>gp(x, 1e-9)</code> versus <code>x</code>.</p></div><a class="docs-sourcelink" target="_blank" href="https://github.com/JuliaGaussianProcesses/AbstractGPs.jl/blob/ff7705e78a5aa91b8fa3fe3d738e6571ac02156e/src/util/plotting.jl#L76-L103">source</a></section></article><h3 id="Makie.jl"><a class="docs-heading-anchor" href="#Makie.jl">Makie.jl</a><a id="Makie.jl-1"></a><a class="docs-heading-anchor-permalink" href="#Makie.jl" title="Permalink"></a></h3><p>You can use the Julia package <a href="https://github.com/JuliaGaussianProcesses/AbstractGPsMakie.jl">AbstractGPsMakie.jl</a> to plot Gaussian processes with <a href="https://github.com/JuliaPlots/Makie.jl">Makie.jl</a>.</p><p><video src="https://juliagaussianprocesses.github.io/AbstractGPsMakie.jl/stable/posterior_animation.mp4" controls="true" title="posterior animation"><a href="https://juliagaussianprocesses.github.io/AbstractGPsMakie.jl/stable/posterior_animation.mp4">posterior animation</a></video></p></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="../api/">« The Main APIs</a><a class="docs-footer-nextpage" href="../examples/0-intro-1d/">Intro to AbstractGPs: one-dimensional regression »</a><div class="flexbox-break"></div><p class="footer-message">Powered by <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> and the <a href="https://julialang.org/">Julia Programming Language</a>.</p></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="auto">Automatic (OS)</option><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> version 1.3.0 on <span class="colophon-date" title="Sunday 10 March 2024 11:57">Sunday 10 March 2024</span>. Using Julia version 1.10.2.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>
sampleplot(gp(rand(5)); samples=10, linealpha=1.0)</code></pre><p>The given example plots 10 samples from the projection of the GP <code>gp</code>. The <code>linealpha</code> is modified from default of 0.35 to 1.</p><hr/><pre><code class="nohighlight hljs">sampleplot(x::AbstractVector, gp::AbstractGP; samples=1, kwargs...)</code></pre><p>Plot samples from the finite projection <code>gp(x, 1e-9)</code> versus <code>x</code>.</p></div><a class="docs-sourcelink" target="_blank" href="https://github.com/JuliaGaussianProcesses/AbstractGPs.jl/blob/7544aa2b0569a47899dbdbb19662784ff9198990/src/util/plotting.jl#L76-L103">source</a></section></article><h3 id="Makie.jl"><a class="docs-heading-anchor" href="#Makie.jl">Makie.jl</a><a id="Makie.jl-1"></a><a class="docs-heading-anchor-permalink" href="#Makie.jl" title="Permalink"></a></h3><p>You can use the Julia package <a href="https://github.com/JuliaGaussianProcesses/AbstractGPsMakie.jl">AbstractGPsMakie.jl</a> to plot Gaussian processes with <a href="https://github.com/JuliaPlots/Makie.jl">Makie.jl</a>.</p><p><video src="https://juliagaussianprocesses.github.io/AbstractGPsMakie.jl/stable/posterior_animation.mp4" controls="true" title="posterior animation"><a href="https://juliagaussianprocesses.github.io/AbstractGPsMakie.jl/stable/posterior_animation.mp4">posterior animation</a></video></p></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="../api/">« The Main APIs</a><a class="docs-footer-nextpage" href="../examples/0-intro-1d/">Intro to AbstractGPs: one-dimensional regression »</a><div class="flexbox-break"></div><p class="footer-message">Powered by <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> and the <a href="https://julialang.org/">Julia Programming Language</a>.</p></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="auto">Automatic (OS)</option><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> version 1.3.0 on <span class="colophon-date" title="Sunday 10 March 2024 12:12">Sunday 10 March 2024</span>. Using Julia version 1.10.2.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>
75 changes: 48 additions & 27 deletions dev/examples/0-intro-1d/Manifest.toml
Original file line number Diff line number Diff line change
Expand Up @@ -2,27 +2,48 @@

julia_version = "1.10.2"
manifest_format = "2.0"
project_hash = "f2a4e287233f560750b3481c1f2594a5673c5bf1"
project_hash = "3c109a38199a7121e830ef45aab8aa463ab506aa"

[[deps.AbstractGPs]]
deps = ["ChainRulesCore", "Distributions", "FillArrays", "IrrationalConstants", "KernelFunctions", "LinearAlgebra", "PDMats", "Random", "RecipesBase", "Reexport", "Statistics", "StatsBase", "Test"]
git-tree-sha1 = "2d343537942b8da16c642a43c673e43b4060ceb7"
git-tree-sha1 = "43dccfd5291fa2cfad4a631c7eff04dd023eeb97"
repo-rev = "master"
repo-url = "/home/runner/work/AbstractGPs.jl/AbstractGPs.jl"
uuid = "99985d1d-32ba-4be9-9821-2ec096f28918"
version = "0.5.20"

[[deps.AbstractMCMC]]
deps = ["BangBang", "ConsoleProgressMonitor", "Distributed", "LogDensityProblems", "Logging", "LoggingExtras", "ProgressLogging", "Random", "StatsBase", "TerminalLoggers", "Transducers"]
git-tree-sha1 = "87e63dcb990029346b091b170252f3c416568afc"
deps = ["BangBang", "ConsoleProgressMonitor", "Distributed", "FillArrays", "LogDensityProblems", "Logging", "LoggingExtras", "ProgressLogging", "Random", "StatsBase", "TerminalLoggers", "Transducers"]
git-tree-sha1 = "b0489adc45a7c8cf0d8e2ddf764f89c1c3decebd"
uuid = "80f14c24-f653-4e6a-9b94-39d6b0f70001"
version = "4.4.2"
version = "5.2.0"

[[deps.AbstractTrees]]
git-tree-sha1 = "2d9c9a55f9c93e8887ad391fbae72f8ef55e1177"
uuid = "1520ce14-60c1-5f80-bbc7-55ef81b5835c"
version = "0.4.5"

[[deps.Accessors]]
deps = ["CompositionsBase", "ConstructionBase", "Dates", "InverseFunctions", "LinearAlgebra", "MacroTools", "Markdown", "Test"]
git-tree-sha1 = "c0d491ef0b135fd7d63cbc6404286bc633329425"
uuid = "7d9f7c33-5ae7-4f3b-8dc6-eff91059b697"
version = "0.1.36"

[deps.Accessors.extensions]
AccessorsAxisKeysExt = "AxisKeys"
AccessorsIntervalSetsExt = "IntervalSets"
AccessorsStaticArraysExt = "StaticArrays"
AccessorsStructArraysExt = "StructArrays"
AccessorsUnitfulExt = "Unitful"

[deps.Accessors.weakdeps]
AxisKeys = "94b1ba4f-4ee9-5380-92f1-94cde586c3c5"
IntervalSets = "8197267c-284f-5f27-9208-e0e47529a953"
Requires = "ae029012-a4dd-5104-9daa-d747884805df"
StaticArrays = "90137ffa-7385-5640-81b9-e52037218182"
StructArrays = "09ab397b-f2b6-538f-b94a-2f83cf4a842a"
Unitful = "1986cc42-f94f-5a68-af5c-568840ba703d"

[[deps.Adapt]]
deps = ["LinearAlgebra", "Requires"]
git-tree-sha1 = "cde29ddf7e5726c9fb511f340244ea3481267608"
Expand Down Expand Up @@ -84,23 +105,25 @@ version = "7.7.1"
uuid = "56f22d72-fd6d-98f1-02f0-08ddc0907c33"

[[deps.BangBang]]
deps = ["Compat", "ConstructionBase", "InitialValues", "LinearAlgebra", "Requires", "Setfield", "Tables"]
git-tree-sha1 = "7aa7ad1682f3d5754e3491bb59b8103cae28e3a3"
deps = ["Accessors", "Compat", "ConstructionBase", "InitialValues", "LinearAlgebra", "Requires"]
git-tree-sha1 = "490e739172eb18f762e68dc3b928cad2a077983a"
uuid = "198e06fe-97b7-11e9-32a5-e1d131e6ad66"
version = "0.3.40"
version = "0.4.1"

[deps.BangBang.extensions]
BangBangChainRulesCoreExt = "ChainRulesCore"
BangBangDataFramesExt = "DataFrames"
BangBangStaticArraysExt = "StaticArrays"
BangBangStructArraysExt = "StructArrays"
BangBangTablesExt = "Tables"
BangBangTypedTablesExt = "TypedTables"

[deps.BangBang.weakdeps]
ChainRulesCore = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4"
DataFrames = "a93c6f00-e57d-5684-b7b6-d8193f3e46c0"
StaticArrays = "90137ffa-7385-5640-81b9-e52037218182"
StructArrays = "09ab397b-f2b6-538f-b94a-2f83cf4a842a"
Tables = "bd369af6-aec1-5ad0-b16a-f7cc5008161c"
TypedTables = "9d95f2ec-7b3d-5a63-8d20-e2491e220bb9"

[[deps.Base64]]
Expand Down Expand Up @@ -215,13 +238,11 @@ version = "1.1.0+0"
git-tree-sha1 = "802bb88cd69dfd1509f6670416bd4434015693ad"
uuid = "a33af91c-f02d-484b-be07-31d278c5ca2b"
version = "0.1.2"
weakdeps = ["InverseFunctions"]

[deps.CompositionsBase.extensions]
CompositionsBaseInverseFunctionsExt = "InverseFunctions"

[deps.CompositionsBase.weakdeps]
InverseFunctions = "3587e190-3f89-42d0-90ee-14403ec27112"

[[deps.ConcurrentUtilities]]
deps = ["Serialization", "Sockets"]
git-tree-sha1 = "9c4708e3ed2b799e6124b5673a712dda0b596a9b"
Expand Down Expand Up @@ -352,9 +373,9 @@ version = "3.4.7"

[[deps.EllipticalSliceSampling]]
deps = ["AbstractMCMC", "ArrayInterface", "Distributions", "Random", "Statistics"]
git-tree-sha1 = "973b4927d112559dc737f55d6bf06503a5b3fc14"
git-tree-sha1 = "e611b7fdfbfb5b18d5e98776c30daede41b44542"
uuid = "cad2338a-1db2-11e9-3401-43bc07c9ede2"
version = "1.1.0"
version = "2.0.0"

[[deps.EpollShim_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl"]
Expand Down Expand Up @@ -552,6 +573,12 @@ version = "0.3.0"
deps = ["Markdown"]
uuid = "b77e0a4c-d291-57a0-90e8-8db25a27a240"

[[deps.InverseFunctions]]
deps = ["Test"]
git-tree-sha1 = "68772f49f54b479fa88ace904f6127f0a3bb2e46"
uuid = "3587e190-3f89-42d0-90ee-14403ec27112"
version = "0.1.12"

[[deps.IrrationalConstants]]
git-tree-sha1 = "630b497eafcc20001bba38a4651b327dcfc491d2"
uuid = "92d709cd-6900-40b7-9082-c6be49f344b6"
Expand Down Expand Up @@ -828,10 +855,10 @@ uuid = "442fdcdd-2543-5da2-b0f3-8c86c306513e"
version = "0.3.2"

[[deps.MicroCollections]]
deps = ["BangBang", "InitialValues", "Setfield"]
git-tree-sha1 = "629afd7d10dbc6935ec59b32daeb33bc4460a42e"
deps = ["Accessors", "BangBang", "InitialValues"]
git-tree-sha1 = "44d32db644e84c75dab479f1bc15ee76a1a3618f"
uuid = "128add7d-3638-4c79-886c-908ea0c25c34"
version = "0.1.4"
version = "0.2.0"

[[deps.Missings]]
deps = ["DataAPI"]
Expand Down Expand Up @@ -1192,15 +1219,12 @@ deps = ["HypergeometricFunctions", "IrrationalConstants", "LogExpFunctions", "Re
git-tree-sha1 = "cef0472124fab0695b58ca35a77c6fb942fdab8a"
uuid = "4c63d2b9-4356-54db-8cca-17b64c39e42c"
version = "1.3.1"
weakdeps = ["ChainRulesCore", "InverseFunctions"]

[deps.StatsFuns.extensions]
StatsFunsChainRulesCoreExt = "ChainRulesCore"
StatsFunsInverseFunctionsExt = "InverseFunctions"

[deps.StatsFuns.weakdeps]
ChainRulesCore = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4"
InverseFunctions = "3587e190-3f89-42d0-90ee-14403ec27112"

[[deps.Strided]]
deps = ["LinearAlgebra", "TupleTools"]
git-tree-sha1 = "a7a664c91104329c88222aa20264e1a05b6ad138"
Expand Down Expand Up @@ -1270,10 +1294,10 @@ weakdeps = ["Random", "Test"]
TestExt = ["Test", "Random"]

[[deps.Transducers]]
deps = ["Adapt", "ArgCheck", "BangBang", "Baselet", "CompositionsBase", "ConstructionBase", "DefineSingletons", "Distributed", "InitialValues", "Logging", "Markdown", "MicroCollections", "Requires", "Setfield", "SplittablesBase", "Tables"]
git-tree-sha1 = "3064e780dbb8a9296ebb3af8f440f787bb5332af"
deps = ["Accessors", "Adapt", "ArgCheck", "BangBang", "Baselet", "CompositionsBase", "ConstructionBase", "DefineSingletons", "Distributed", "InitialValues", "Logging", "Markdown", "MicroCollections", "Requires", "SplittablesBase", "Tables"]
git-tree-sha1 = "47e516e2eabd0cf1304cd67839d9a85d52dd659d"
uuid = "28d57a85-8fef-5791-bfe6-a80928e7c999"
version = "0.4.80"
version = "0.4.81"

[deps.Transducers.extensions]
TransducersBlockArraysExt = "BlockArrays"
Expand Down Expand Up @@ -1328,15 +1352,12 @@ deps = ["Dates", "LinearAlgebra", "Random"]
git-tree-sha1 = "3c793be6df9dd77a0cf49d80984ef9ff996948fa"
uuid = "1986cc42-f94f-5a68-af5c-568840ba703d"
version = "1.19.0"
weakdeps = ["ConstructionBase", "InverseFunctions"]

[deps.Unitful.extensions]
ConstructionBaseUnitfulExt = "ConstructionBase"
InverseFunctionsUnitfulExt = "InverseFunctions"

[deps.Unitful.weakdeps]
ConstructionBase = "187b0558-2788-49d3-abe0-74a17ed4e7c9"
InverseFunctions = "3587e190-3f89-42d0-90ee-14403ec27112"

[[deps.UnitfulLatexify]]
deps = ["LaTeXStrings", "Latexify", "Unitful"]
git-tree-sha1 = "e2d817cc500e960fdbafcf988ac8436ba3208bfd"
Expand Down
Loading

0 comments on commit 149de0c

Please sign in to comment.