-
Notifications
You must be signed in to change notification settings - Fork 1
/
1_🔍_Search.py
executable file
·309 lines (238 loc) · 9.06 KB
/
1_🔍_Search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
#!/usr/bin/env python
import os
import re
import sys
import argparse
import textwrap
import logging
import warnings
from typing import Dict, List
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.core import Settings
from llama_index.core import PromptHelper, GPTVectorStoreIndex
from llama_index.llms.openai import OpenAI
from llama_index.core import StorageContext
from llama_index.core.retrievers import VectorIndexRetriever
from llama_index.core.query_engine import RetrieverQueryEngine
from llama_index.vector_stores.weaviate import WeaviateVectorStore
from llama_index.core.vector_stores.types import VectorStoreQueryMode
import weaviate
import streamlit as st
from slack_sdk import WebClient
st.set_page_config(page_title="JaneliaGPT", page_icon="🔍")
from state import init_state
init_state()
warnings.simplefilter("ignore", ResourceWarning)
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger('llama_index').setLevel(logging.DEBUG)
logging.getLogger('openai').setLevel(logging.DEBUG)
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
# Constants
EMBED_MODEL_NAME="text-embedding-3-large"
CONTEXT_WINDOW = 4096
NUM_OUTPUT = 256
CHUNK_OVERLAP_RATIO = 0.1
SURVEY_CLASS = "SurveyResponses"
SIDEBAR_DESC = """
JaneliaGPT uses OpenAI models to index various data sources in a vector database for searching.
Currently the following sources are indexed:
* Janelia.org
* Janelia-Software Slack Workspace
* Janelia Wiki (spaces 'SCSW', 'SCS', and 'ScientificComputing')
"""
NODE_SCHEMA: List[Dict] = [
{
"dataType": ["text"],
"description": "User query",
"name": "query"
},
{
"dataType": ["text"],
"description": "GPT response",
"name": "response"
},
{
"dataType": ["text"],
"description": "Survey response",
"name": "survey",
},
]
def create_survey_schema(weaviate_client) -> None:
"""Create schema."""
# first check if schema exists
schema = weaviate_client.schema.get()
classes = schema["classes"]
existing_class_names = {c["class"] for c in classes}
# if schema already exists, don't create
if SURVEY_CLASS in existing_class_names:
return
properties = NODE_SCHEMA
class_obj = {
"class": SURVEY_CLASS, # <= note the capital "A".
"description": f"Class for survey responses",
"properties": properties,
}
weaviate_client.schema.create_class(class_obj)
def record_log(weaviate_client, query, response):
metadata = {
"query": query,
"response": response,
'survey': 'Unknown'
}
return weaviate_client.data_object.create(metadata, SURVEY_CLASS)
def record_survey(weaviate_client, db_id, survey):
metadata = {
"survey": survey,
}
weaviate_client.data_object.update(metadata, SURVEY_CLASS, db_id)
def get_unique_nodes(nodes):
docs_ids = set()
unique_nodes = list()
for node in nodes:
if node.node.ref_doc_id not in docs_ids:
docs_ids.add(node.node.ref_doc_id)
unique_nodes.append(node)
return unique_nodes
def escape_text(text):
text = re.sub("<", "<", text)
text = re.sub(">", ">", text)
text = re.sub("([_#])", "\\\1", text)
return text
@st.cache_data
def get_message_link(_slack_client, channel, ts):
res = _slack_client.chat_getPermalink(channel=channel, message_ts=ts)
if res['ok']:
return res['permalink']
@st.cache_resource
def get_weaviate_client(weaviate_url):
client = weaviate.Client(weaviate_url)
if not client.is_live():
raise Exception(f"Weaviate is not live at {weaviate_url}")
if not client.is_live():
raise Exception(f"Weaviate is not ready at {weaviate_url}")
return client
@st.cache_resource
def get_slack_client():
slack_client = WebClient(token=os.environ.get('SLACK_TOKEN'))
res = slack_client.api_test()
if not res["ok"]:
logger.error(f"Error initializing Slack API: {res['error']}")
sys.exit(1)
return slack_client
def get_query_engine(_weaviate_client):
model = st.session_state["model"]
class_prefix = st.session_state["class_prefix"]
temperature = st.session_state["temperature"] / 100.0
search_alpha = st.session_state["search_alpha"] / 100.0
num_results = st.session_state["num_results"]
logger.info("Getting query engine with parameters:")
logger.info(f" model: {model}")
logger.info(f" class_prefix: {class_prefix}")
logger.info(f" temperature: {temperature}")
logger.info(f" search_alpha: {search_alpha}")
logger.info(f" num_results: {num_results}")
llm = OpenAI(model=model, temperature=temperature)
embed_model = OpenAIEmbedding(model=EMBED_MODEL_NAME)
prompt_helper = PromptHelper(CONTEXT_WINDOW, NUM_OUTPUT, CHUNK_OVERLAP_RATIO)
Settings.llm = llm
Settings.embed_model = embed_model
Settings.chunk_size = 512
Settings.prompt_helper = prompt_helper
vector_store = WeaviateVectorStore(weaviate_client=_weaviate_client, class_prefix=class_prefix)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = GPTVectorStoreIndex([], storage_context=storage_context)
# configure retriever
retriever = VectorIndexRetriever(
index,
similarity_top_k=num_results,
vector_store_query_mode=VectorStoreQueryMode.HYBRID,
alpha=search_alpha,
)
# construct query engine
query_engine = RetrieverQueryEngine.from_args(retriever)
return query_engine
def get_response(_query_engine, _slack_client, query):
# Escape certain characters which the
query = re.sub("\"", "", query)
response = _query_engine.query(query)
msg = f"{response.response}\n\nSources:\n\n"
for node in get_unique_nodes(response.source_nodes):
extra_info = node.node.extra_info
text = node.node.text
text = re.sub("\n+", " ", text)
text = textwrap.shorten(text, width=100, placeholder="...")
text = escape_text(text)
source = extra_info['source']
if source.lower() == 'slack':
channel_id = extra_info['channel']
ts = extra_info['ts']
msg += f"* {source}: [{text}]({get_message_link(_slack_client, channel_id, ts)})\n"
else:
msg += f"* {source}: [{extra_info['title']}]({extra_info['link']})\n"
return msg
@st.cache_data
def get_cached_response(_query_engine, _slack_client, query):
return get_response(_query_engine, _slack_client, query)
parser = argparse.ArgumentParser(description='Web service for semantic search using Weaviate and OpenAI')
parser.add_argument('-w', '--weaviate-url', type=str, default="http://localhost:8080", help='Weaviate database URL')
args = parser.parse_args()
st.sidebar.markdown(SIDEBAR_DESC)
if 'survey_complete' not in st.session_state:
st.session_state.survey_complete = True
if 'query' not in st.session_state:
st.session_state.query = ""
weaviate_client = get_weaviate_client(args.weaviate_url)
st.title("Ask JaneliaGPT")
query = st.text_input("What would you like to ask?", '', key="query")
#If query is filled in (which occurs when enter key is pressed) or the submit button is clicked
if query or st.button("Submit"):
logger.info(f"Query: {query}")
try:
query_engine = get_query_engine(weaviate_client)
slack_client = get_slack_client()
msg = get_response(query_engine, slack_client, query)
st.session_state.db_id = record_log(weaviate_client, query, msg)
st.session_state.survey_complete = False
st.session_state.response = msg
st.session_state.response_error = False
logger.info(f"Response saved as {st.session_state.db_id}: {msg}")
st.success(msg)
except Exception as e:
msg = f"An error occurred: {e}"
st.session_state.response = msg
st.session_state.response_error = True
logger.exception(msg)
st.error(msg)
elif st.session_state.response:
# Re-render the saved response
if st.session_state.response_error:
st.error(st.session_state.response)
else:
st.success(st.session_state.response)
def survey_click(survey_response):
st.session_state.survey = survey_response
st.session_state.survey_complete = True
create_survey_schema(weaviate_client)
db_id = st.session_state.db_id
record_survey(weaviate_client, db_id, survey_response)
logger.info(f"Logged survey response: {survey_response}")
del st.session_state['survey']
if st.session_state.response and not st.session_state.survey_complete:
st.markdown(
"""
<style>
div[data-testid="column"]:nth-of-type(1)
{
text-align: end;
}
</style>
""",unsafe_allow_html=True
)
with st.form(key="survey_form"):
st.markdown("Was your question answered?")
col1, col2 = st.columns([1,1])
with col1:
st.form_submit_button("Yes", on_click=survey_click, args=('Yes', ))
with col2:
st.form_submit_button("No", on_click=survey_click, args=('No', ))