Skip to content

Named entity recognition for scientific and vernacular plant names

License

Notifications You must be signed in to change notification settings

IsabelMeraner/BotanicalNER

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

39 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

BotanicalNER

Project: Neural Named Entity Recognition for Scientific and Vernacular Plant Names
Author: Isabel Meraner
Institute of Computational Linguistics, University of Zurich (Switzerland), 2019

The resources and scripts in this repository have been created for a master thesis project on "Neural Named Entity Recognition for Scientific and Vernacular Plant Name" at the University of Zurich.
https://www.cl.uzh.ch/en/studies/theses/lic-master-theses.html
The main focus of the project was to identify and disambiguate scientific and vernacular plant names across multiple German and English text genres and to provide a valuable tool in order to extract and preserve (ethno-)botanical knowledge.

If you have any questions or suggestions concerning this project, please don't hesitate to contact me!


This repository contains two subfolders “SCRIPTS” and “RESOURCES”.
In the RESOURCES folder, you can find sample output material and data resources.

Please note that the bi-LSTM-CRF architecture used for training was developed by Lample et al. (2016):
Lample et al. (2016). Neural Architectures for Named Entity Recognition. URL= https://arxiv.org/abs/1603.01360

The adapted files from the bi-LSTM-CRF tagger by Lample et al. (2016) can be found under 'scripts/web_interface/tagger-master/'.

TRAINING DATA (path = ‘resources/corpora/training corpora/’)

Silver standard training corpora (in IOB-format):

• plantblog_corpus_{de|en}.tok.pos.iob.txt
• wiki_abstractcorpus_{de|en}.tok.pos.iob.txt
• TextBerg_subcorpus_{de|en}.tok.pos.iob.txt
• botlit_corpus_{de|en}.tok.pos.iob.txt

Gold standard fold of combined dataset (in IOB-format):

• combined.test.fold1GOLD_{de|en}.txt

Fungi testset for in-domain evaluation on held-out entities:

• test_fungi_{de|en}.tok.pos.iobGOLD.txt

GAZETTEERS (path = ‘resources/gazetteers/’)

Due to copyright restrictions, these gazetteers only comprise a subset based on plant names retrieved from Wikipedia of our original gazetteers.

# Vernacular names (German):

• de_fam.txt
• de_species.txt

# Vernacular names (English):

• en_fam.txt
• en_species.txt

# Scientific names (Latin):

• lat_fam.txt
• lat_species.txt
• lat_genus.txt
• lat_subfam.txt
• lat_class.txt
• lat_order.txt
• lat_phylum.txt

# Lookup tables for vernacular names:

• {de|en}_lat_referencedatabase.tsv

bi-LSTM-CRF MODELS (path = ‘resources/models/’)

# Best-performing models for German and English (single-dataset evaluation):

• model_combined_chardim29_de
• model_wiki_dropout0.3_de
• model_tb_dropout0.7_de
• model_plantblog_capdim1_de
• model_botlit_dropout0.3_de
• model_combined_dropout0.7_en
• model_wiki_chardim29_en
• model_tb_capdim1_en
• model_plantblog_chardim50_en
• model_s800_dropout0.7_en

# Best-performing models for German and English (cross-dataset evaluation):

• model_wiki_crosscorpus_de_dropout0.3 (cross-corpus setting)
• model_wiki_crosscorpus_de_capdim1 (fungi test set)
• model_wiki_crosscorpus_en_preemb_dropout0.5 (cross-corpus setting)
• model_wiki_crosscorpus_en_capdim1 (fungi test set)

TAGGED DATA (path = ‘resources/sample output/’)

# Single-dataset model predictions:

• predictions_wiki_{de|en}.output
• predictions_textberg_{de|en}.output
• predictions_blogs_{de|en}.output
• predictions_botlit_{de|en}.output

# Cross-dataset model predictions:

• predictions_model_wiki_test_textberg_{de|en}.output
• predictions_model_wiki_test_blogs_{de|en}.output
• predictions_model_wiki_test_botlit_{de|en}.output

ENTITY LINKING (path = ‘resources/linked data/’)

# Vernacular-scientific lookup-table:

• {de|en}_lat_referencedatabase.tsv

# Example JSON-output per data resource:

• json_data_wiki_{de|en}.json
• json_data_textberg_{de|en}.json
• json_data_blogs_{de|en}.json
• json_data_botlit_{de|en}.json

In the SCRIPTS folder, you can find all Python and bash scripts that have been used during training:

DATA COLLECTION (path = ‘scripts/data collection/’)

# create Text+Berg subset of sentences containing plant names:

$ python3 get_subset_textberg.py -i ./../TextBerg/SAC/ -o ./subset_textberg_de.txt -g ./../resources/gazetteers/ -l de

# generate Latin plant name abbreviations:

$ python3 add_latin_abbreviations.py -i ./../resources/gazetteers/lat/lat_species.txt -o ./outfile.txt

# generate German morpholocical variants:

$ python3 add_german_variants.py -i ./../resources/gazetteers/de/de_fam.txt -o ./outfile.txt

# split German compounds and add name variants:

$ python3 add_compound_variants.py -i ./../resources/gazetteers/de/de species.txt -o ./outfileGAZ.txt

# create language-specific gazetteers:

$ python3 create_gazetteers.py -i ./../resources/gazetteers/de/de_species.txt -o outfile.txt

# add name variants to lookup-table:

$ python3 add_variants_database.py -i ./../resources/gazetteers/lookup_table/de_lat_referencedatabase.tsv -o ./outfile

# create fungi testset from Wikipedia articles:

$ python3 get_wiki_fungi_testset.py -o ./outfile.txt -c Pilze -l de

# retrieve Wikipedia abstracts and trivial names sections:

$ python3 retrieve_wiki_sections.py -i ./../resources/gazetteers/lat/lat_species.txt -t ./outfile_trivialsections.txt -a outfile_wikiabstracts.txt -l de

# extract plant names from Catalogue of Life archive:

$ python3 extracttaxa_cat_of_life -t ./colarchive/taxa/ -v ./colarchive/vernacular/ -l ./latin.out -d ./german.out -e ./english.out -r rest_vernacular.out

PREPROCESSING (path = ‘scripts/preprocessing/’)

# tokenization:

$ python3 tokenize_corpus.py -d ./raw_data/ -l de

# part-of-speech tagging:

$ python3 ./treetagger-python_miotto/pos_tag_corpus.py -d ./../resources/corpora/

DICTIONARY-BASED ANNOTATION (path = ‘scripts/annotation/’)

# German annotation in IOB-format:

$ python3 iobannotate_corpus_de.py -d ./../resources/corpora/training_corpora/de/ -v ./../resources/gazetteers/de/ -s ./../resources/gazetteers/lat/ -l de

# English annotation in IOB-format:

$ python3 iobannotate_corpus_en.py -d ./../resources/corpora/training_corpora/en/ -v ./../resources/gazetteers/en/ -s ./../resources/gazetteers/lat/ -l de:

TRAINING (path = ‘scripts/training/’)

# K-fold splitting of training data:

$ python3 kfold_crossvalidation.py -d ./../resources/corpora/training corpora/de/

# Bashscript 5-fold crossvalidation training (examples):

$ bash bashscript_5foldtraining_preemb_en.sh
$ bash bashscript_5foldtraining_preemb_de.sh

# Adapted scripts from Lample et al. (2016):

$ python train_no_dev.py
$ python utils.py

EVALUATION (path = ‘scripts/evaluation/’)

# Averaged evaluation over 5 folds:

$ python final_eval_kfold.py -d ./../../evaluation/baseline/model_baseline/ -o ./evaluation_files/

# Evaluation of silver standard:

$ python evaluate_gold_silver.py -s ./../resources/corpora/gold_standard/de/alldata.test.fold1SILVER de.txt -g ./../resources/corpora/gold_standard/de/combined.test.fold1GOLD de.txt

# Cross-dataset evaluation:

$ python3 cross_dataset_evaluation.py -s ./silver_standard/plantblog_corpus.test.fold1.txt -t ./tagged_data/model_wiki_test_blog_f1_dropout5.tsv

# File statistics training corpora (size, token, types, averaged length):

$ python3 file_statistics.py -i ./../resources/corpora/training_corpora/de/

# Transform IOB-format to 1-sentence-per-line (input for tagger.py):

$ python3 transform_iob_to_sentences.py -i ./../resources/corpora/training_corpora/de/botlit_corpus_de.tok.pos.iob.txt -o botlit_sentences.txt

ENTITY LINKING:

# Catalogue of Life entity linking and creation of JSON-output:

$ python3 entity_linker.py -i ./../resources/corpora/training_corpora/de/botlit_corpus de.tok.pos.iob.txt -o ./json_file.json -f IOB -r ./../resources/gazetteers/lookup_table/de_lat_referencedatabase.tsv -l True

About

Named entity recognition for scientific and vernacular plant names

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published