Skip to content

Commit

Permalink
docs: json datatype rfc (#4515)
Browse files Browse the repository at this point in the history
* docs: json datatype rfc

* docs: turn to a jsonb proposal

* chore: fix typo

* feat: add store and query process

* fix: typo

* fix: use query nodes instead of query plans

* feat: a detailed overview of query

* fix: grammar

* fix: use independent cast function

* fix: unify cast function

* fix: refine, make statements clear

* docs: update rfc according to impl

* docs: refine

* docs: fix wrong arrows

* docs: refine

* docs: fix some errors qaq
  • Loading branch information
CookiePieWw authored Sep 19, 2024
1 parent 8786624 commit 0295f8d
Showing 1 changed file with 197 additions and 0 deletions.
197 changes: 197 additions & 0 deletions docs/rfcs/2024-08-06-json-datatype.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,197 @@
---
Feature Name: Json Datatype
Tracking Issue: https://github.com/GreptimeTeam/greptimedb/issues/4230
Date: 2024-8-6
Author: "Yuhan Wang <[email protected]>"
---

# Summary
This RFC proposes a method for storing and querying JSON data in the database.

# Motivation
JSON is widely used across various scenarios. Direct support for writing and querying JSON can significantly enhance the database's flexibility.

# Details

## Storage and Query

GreptimeDB's type system is built on Arrow/DataFusion, where each data type in GreptimeDB corresponds to a data type in Arrow/DataFusion. The proposed JSON type will be implemented on top of the existing `Binary` type, leveraging the current `datatype::value::Value` and `datatype::vectors::BinaryVector` implementations, utilizing the JSONB format as the encoding of JSON data. JSON data is stored and processed similarly to binary data within the storage layer and query engine.

This approach brings problems when dealing with insertions and queries of JSON columns.

## Insertion

Users commonly write JSON data as strings. Thus we need to make conversions between string and JSONB. There are 2 ways to do this:

1. MySQL and PostgreSQL servers provide auto-conversions between strings and JSONB. When a string is inserted into a JSON column, the server will try to parse the string as JSON and convert it to JSONB. The non-JSON strings will be rejected.

2. A function `parse_json` is provided to convert string to JSONB. If the string is not a valid JSON string, the function will return an error.

For example, in MySQL client:
```SQL
CREATE TABLE IF NOT EXISTS test (
ts TIMESTAMP TIME INDEX,
a INT,
b JSON
);

INSERT INTO test VALUES(
0,
0,
'{
"name": "jHl2oDDnPc1i2OzlP5Y",
"timestamp": "2024-07-25T04:33:11.369386Z",
"attributes": { "event_attributes": 48.28667 }
}'
);

INSERT INTO test VALUES(
0,
0,
parse_json('{
"name": "jHl2oDDnPc1i2OzlP5Y",
"timestamp": "2024-07-25T04:33:11.369386Z",
"attributes": { "event_attributes": 48.28667 }
}')
);
```
Are both valid.

The dataflow of the insertion process is as follows:
```
Insert JSON strings directly through client:
Parse Insert
String(Serialized JSON)┌──────────┐Arrow Binary(JSONB)┌──────┐Arrow Binary(JSONB)
Client ---------------------->│ Server │------------------>│ Mito │------------------> Storage
└──────────┘ └──────┘
(Server identifies JSON type and performs auto-conversion)
Insert JSON strings through parse_json function:
Parse Insert
String(Serialized JSON)┌──────────┐String(Serialized JSON)┌─────┐Arrow Binary(JSONB)┌──────┐Arrow Binary(JSONB)
Client ---------------------->│ Server │---------------------->│ UDF │------------------>│ Mito │------------------> Storage
└──────────┘ └─────┘ └──────┘
(Conversion is performed by UDF inside Query Engine)
```

Servers identify JSON column through column schema and perform auto-conversions. But when using prepared statements and binding parameters, the corresponding cached plans in datafusion generated by prepared statements cannot identify JSON columns. Under this circumstance, the servers identify JSON columns through the given parameters and perform auto-conversions.

The following is an example of inserting JSON data through prepared statements:
```Rust
sqlx::query(
"create table test(ts timestamp time index, j json)",
)
.execute(&pool)
.await
.unwrap();

let json = serde_json::json!({
"code": 200,
"success": true,
"payload": {
"features": [
"serde",
"json"
],
"homepage": null
}
});

// Valid, can identify serde_json::Value as JSON type
sqlx::query("insert into test values($1, $2)")
.bind(i)
.bind(json)
.execute(&pool)
.await
.unwrap();

// Invalid, cannot identify String as JSON type
sqlx::query("insert into test values($1, $2)")
.bind(i)
.bind(json.to_string())
.execute(&pool)
.await
.unwrap();
```

## Query

Correspondingly, users prefer to display JSON data as strings. Thus we need to make conversions between JSON data and strings before presenting JSON data. There are also 2 ways to do this: auto-conversions on MySQL and PostgreSQL servers, and function `json_to_string`.

For example, in MySQL client:
```SQL
SELECT b FROM test;

SELECT json_to_string(b) FROM test;
```
Will both return the JSON as human-readable strings.

Specifically, to perform auto-conversions, we attach a message to JSON data in the `metadata` of `Field` in Arrow/Datafusion schema when scanning a JSON column. Frontend servers could identify JSON data and convert it to strings.

The dataflow of the query process is as follows:
```
Query directly through client:
Decode Scan
String(Serialized JSON)┌──────────┐Arrow Binary(JSONB)┌──────────────┐Arrow Binary(JSONB)
Client <----------------------│ Server │<------------------│ Query Engine │<----------------- Storage
└──────────┘ └──────────────┘
(Server identifies JSON type and performs auto-conversion based on column metadata)
Query through json_to_string function:
Scan & Decode
String(Serialized JSON)┌──────────┐String(Serialized JSON)┌──────────────┐Arrow Binary(JSONB)
Client <----------------------│ Server │<----------------------│ Query Engine │<----------------- Storage
└──────────┘ └──────────────┘
(Conversion is performed by UDF inside Query Engine)
```

However, if a function uses JSON type as its return type, the metadata method mentioned above is not applicable. Thus the functions of JSON type should specify the return type explicitly instead of returning a JSON type, such as `json_get_int` and `json_get_float` which return corresponding data of `INT` and `FLOAT` type respectively.

## Functions
Similar to the common JSON type, JSON data can be queried with functions.

For example:
```SQL
CREATE TABLE IF NOT EXISTS test (
ts TIMESTAMP TIME INDEX,
a INT,
b JSON
);

INSERT INTO test VALUES(
0,
0,
'{
"name": "jHl2oDDnPc1i2OzlP5Y",
"timestamp": "2024-07-25T04:33:11.369386Z",
"attributes": { "event_attributes": 48.28667 }
}'
);

SELECT json_get_string(b, 'name') FROM test;
+---------------------+
| b.name |
+---------------------+
| jHl2oDDnPc1i2OzlP5Y |
+---------------------+

SELECT json_get_float(b, 'attributes.event_attributes') FROM test;
+--------------------------------+
| b.attributes.event_attributes |
+--------------------------------+
| 48.28667 |
+--------------------------------+

```
And more functions can be added in the future.

# Drawbacks

As a general purpose JSON data type, JSONB may not be as efficient as specialized data types for specific scenarios.

The auto-conversion mechanism is not supported in all scenarios. We need to find workarounds for these scenarios.

# Alternatives

Extract and flatten JSON schema to store in a structured format through pipeline. For nested data, we can provide nested types like `STRUCT` or `ARRAY`.

0 comments on commit 0295f8d

Please sign in to comment.