Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add samples for LLM multi-host GPUs tutorials #1409

Merged
merged 4 commits into from
Aug 22, 2024
Merged
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
131 changes: 131 additions & 0 deletions ai-ml/llm-multihost-gpus/vllm-llama3-405b-A3.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,131 @@
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# [START gke_ai_ml_llm_serving_multihost_gpus_vllm_llama3_405b_a4]

apiVersion: leaderworkerset.x-k8s.io/v1
kind: LeaderWorkerSet
metadata:
name: vllm
spec:
replicas: 1
leaderWorkerTemplate:
size: 2
restartPolicy: RecreateGroupOnPodRestart
leaderTemplate:
metadata:
labels:
role: leader
spec:
containers:
- name: vllm-leader
image: us-central1-docker.pkg.dev/gke-aishared-dev/vllm-ray-multihost/ray-vllm:v0.5.3.post1
env:
- name: RAY_CLUSTER_SIZE
valueFrom:
fieldRef:
fieldPath: metadata.annotations['leaderworkerset.sigs.k8s.io/size']
- name: HUGGING_FACE_HUB_TOKEN
valueFrom:
secretKeyRef:
name: hf-secret
key: hf_api_token
command:
- sh
- -c
- "/vllm-workspace/ray_init.sh leader --ray_cluster_size=$RAY_CLUSTER_SIZE;
python3 -m vllm.entrypoints.api_server --port 8080 --model meta-llama/Meta-Llama-3.1-405B-Instruct --tensor-parallel-size 8 --pipeline_parallel_size 2"
resources:
limits:
nvidia.com/gpu: "8"
memory: 1124Gi
ephemeral-storage: 800Gi
requests:
ephemeral-storage: 800Gi
cpu: 125
ports:
- containerPort: 8080
readinessProbe:
tcpSocket:
port: 8080
initialDelaySeconds: 15
periodSeconds: 10
volumeMounts:
- mountPath: /dev/shm
name: dshm
volumes:
- name: dshm
emptyDir:
medium: Memory
sizeLimit: 15Gi
workerTemplate:
spec:
containers:
- name: vllm-worker
image: us-central1-docker.pkg.dev/gke-aishared-dev/vllm-ray-multihost/ray-vllm:v0.5.3.post1
command:
- sh
- -c
- "/vllm-workspace/ray_init.sh worker --ray_address=$(LEADER_NAME).$(LWS_NAME).$(NAMESPACE).svc.cluster.local"
resources:
limits:
nvidia.com/gpu: "8"
memory: 1124Gi
ephemeral-storage: 800Gi
requests:
ephemeral-storage: 800Gi
cpu: 125
env:
- name: LEADER_NAME
valueFrom:
fieldRef:
fieldPath: metadata.annotations['leaderworkerset.sigs.k8s.io/leader-name']
- name: NAMESPACE
valueFrom:
fieldRef:
fieldPath: metadata.namespace
- name: LWS_NAME
valueFrom:
fieldRef:
fieldPath: metadata.labels['leaderworkerset.sigs.k8s.io/name']
- name: HUGGING_FACE_HUB_TOKEN
valueFrom:
secretKeyRef:
name: hf-secret
key: hf_api_token
volumeMounts:
- mountPath: /dev/shm
name: dshm
volumes:
- name: dshm
emptyDir:
medium: Memory
sizeLimit: 15Gi
-------
apiVersion: v1
kind: Service
metadata:
name: vllm-leader
spec:
ports:
- name: http
port: 8080
protocol: TCP
targetPort: 8080
selector:
leaderworkerset.sigs.k8s.io/name: vllm
role: leader
type: ClusterIP

# [END gke_ai_ml_llm_serving_multihost_gpus_vllm_llama3_405b_a4]