Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Readme changes for Classification and Detection #6

Merged
merged 1 commit into from
Jul 9, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
23 changes: 15 additions & 8 deletions vision/classification_and_detection/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -6,16 +6,23 @@ This is the reference implementation for MLPerf Inference Classification and Obj
Please see the [new docs site](https://docs.mlcommons.org/inference/benchmarks) for an automated way to run this benchmark across different available implementations and do an end-to-end submission with or without docker.

### ResNet50
- [ResNet50 MLCommons Python Reference Implementation](https://docs.mlcommons.org/inference/benchmarks/image_classification/resnet50/#__tabbed_1_1) (Onnxruntime, Tensorflow)
- [ResNet50 Nvidia Implementation](https://docs.mlcommons.org/inference/benchmarks/image_classification/resnet50/#__tabbed_1_2) (TensorRT)
- [ResNet50 Intel Implementation](https://docs.mlcommons.org/inference/benchmarks/image_classification/resnet50/#__tabbed_1_3) (PyTorch)
- [ResNet50 MLCommons C++ Implementation](https://docs.mlcommons.org/inference/benchmarks/image_classification/resnet50/#__tabbed_1_5) (Onnxruntime)

| Implementation | Framework | Supported Devices | Supported Precision |
| -------------- | --------- | ----------------- | ------------------- |
| [Reference](https://docs.mlcommons.org/inference/benchmarks/image_classification/resnet50/#__tabbed_1_1) | Onnxruntime, Tensorflow, Deepsparse | CPU, CUDA, ROCm | fp32 |
| [Nvidia](https://docs.mlcommons.org/inference/benchmarks/image_classification/resnet50/#__tabbed_1_2) | TensorRT | CUDA | int8 |
| [Intel](https://docs.mlcommons.org/inference/benchmarks/image_classification/resnet50/#__tabbed_1_3) | PyTorch | CPU | int8 |
| [MLCommons C++](https://docs.mlcommons.org/inference/benchmarks/image_classification/resnet50/#__tabbed_1_5) | Onnxruntime | CPU, CUDA | fp32 |

### Retinanet
- [Retinanet MLCommons Python Reference Implementation](https://docs.mlcommons.org/inference/benchmarks/object_detection/retinanet/#__tabbed_1_1) (PyTorch, Onnxruntime)
- [Retinanet Nvidia Implementation](https://docs.mlcommons.org/inference/benchmarks/object_detection/retinanet/#__tabbed_1_2) (TensorRT)
- [Retinanet Intel Implementation](https://docs.mlcommons.org/inference/benchmarks/object_detection/retinanet/#__tabbed_1_3) (PyTorch)
- [Retinanet MLCommons C++ Implementation](https://docs.mlcommons.org/inference/benchmarks/object_detection/retinanet/#__tabbed_1_5) (Onnxruntime)

| Implementation | Framework | Supported Devices | Supported Precision |
| -------------- | --------- | ----------------- | ------------------- |
| [Reference](https://docs.mlcommons.org/inference/benchmarks/object_detection/retinanet/#__tabbed_1_1) | Onnxruntime, PyTorch | CPU, CUDA, ROCm | fp32 |
| [Nvidia](https://docs.mlcommons.org/inference/benchmarks/object_detection/retinanet/#__tabbed_1_2) | TensorRT | CUDA | int8 |
| [Intel](https://docs.mlcommons.org/inference/benchmarks/object_detection/retinanet/#__tabbed_1_3) | PyTorch | CPU | int8 |
| [MLCommons C++](https://docs.mlcommons.org/inference/benchmarks/object_detection/retinanet/#__tabbed_1_5) | Onnxruntime | CPU, CUDA | fp32 |


You can find a short tutorial on how to use this benchmark [here](https://github.com/mlperf/inference/blob/master/vision/classification_and_detection/GettingStarted.ipynb).

Expand Down
Loading