-
Notifications
You must be signed in to change notification settings - Fork 416
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #537 from shunxing1234/master
add aquila2 modeling file
- Loading branch information
Showing
2 changed files
with
318 additions
and
54 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,128 @@ | ||
# coding=utf-8 | ||
# Copyright 2023 EleutherAI and the HuggingFace Inc. team. All rights reserved. | ||
# | ||
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX | ||
# and OPT implementations in this library. It has been modified from its | ||
# original forms to accommodate minor architectural differences compared | ||
# to GPT-NeoX and OPT used by the Meta AI team that trained the model. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
""" Aquila model configuration""" | ||
|
||
from transformers import PretrainedConfig | ||
|
||
|
||
|
||
class AquilaConfig(PretrainedConfig): | ||
r""" | ||
This is the configuration class to store the configuration of a [`AquilaModel`]. It is used to instantiate an Aquila | ||
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the | ||
defaults will yield a similar configuration to that of the Aquila-7B. | ||
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | ||
documentation from [`PretrainedConfig`] for more information. | ||
Args: | ||
vocab_size (`int`, *optional*, defaults to 32000): | ||
Vocabulary size of the Aquila model. Defines the number of different tokens that can be represented by the | ||
`inputs_ids` passed when calling [`AquilaModel`] | ||
hidden_size (`int`, *optional*, defaults to 4096): | ||
Dimension of the hidden representations. | ||
intermediate_size (`int`, *optional*, defaults to 11008): | ||
Dimension of the MLP representations. | ||
num_hidden_layers (`int`, *optional*, defaults to 32): | ||
Number of hidden layers in the Transformer encoder. | ||
num_attention_heads (`int`, *optional*, defaults to 32): | ||
Number of attention heads for each attention layer in the Transformer encoder. | ||
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): | ||
The non-linear activation function (function or string) in the decoder. | ||
max_position_embeddings (`int`, *optional*, defaults to 2048): | ||
The maximum sequence length that this model might ever be used with. Typically set this to something large | ||
just in case (e.g., 512 or 1024 or 2048). | ||
initializer_range (`float`, *optional*, defaults to 0.02): | ||
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | ||
rms_norm_eps (`float`, *optional*, defaults to 1e-12): | ||
The epsilon used by the rms normalization layers. | ||
use_cache (`bool`, *optional*, defaults to `True`): | ||
Whether or not the model should return the last key/values attentions (not used by all models). Only | ||
relevant if `config.is_decoder=True`. | ||
tie_word_embeddings(`bool`, *optional*, defaults to `False`): | ||
Whether to tie weight embeddings | ||
Example: | ||
```python | ||
>>> from transformers import AquilaModel, AquilaConfig | ||
>>> # Initializing a Aquila aquila-7b style configuration | ||
>>> configuration = AquilaConfig() | ||
>>> # Initializing a model from the aquila-7b style configuration | ||
>>> model = AquilaModel(configuration) | ||
>>> # Accessing the model configuration | ||
>>> configuration = model.config | ||
```""" | ||
model_type = "aquila" | ||
keys_to_ignore_at_inference = ["past_key_values"] | ||
|
||
def __init__( | ||
self, | ||
vocab_size=100008, | ||
hidden_size=4096, | ||
intermediate_size=11008, | ||
num_hidden_layers=32, | ||
num_attention_heads=32, | ||
num_key_value_heads=None, | ||
hidden_act="silu", | ||
max_position_embeddings=2048, | ||
initializer_range=0.02, | ||
rms_norm_eps=1e-6, | ||
use_cache=True, | ||
pad_token_id=0, | ||
bos_token_id=1, | ||
eos_token_id=2, | ||
pretraining_tp=1, | ||
tie_word_embeddings=False, | ||
rope_theta=10000.0, | ||
rope_scaling=None, | ||
**kwargs, | ||
): | ||
self.vocab_size = vocab_size | ||
self.max_position_embeddings = max_position_embeddings | ||
self.hidden_size = hidden_size | ||
self.intermediate_size = intermediate_size | ||
self.num_hidden_layers = num_hidden_layers | ||
|
||
# for backward compatibility | ||
if num_key_value_heads is None: | ||
num_key_value_heads = num_attention_heads | ||
|
||
self.num_key_value_heads = num_key_value_heads | ||
|
||
self.num_attention_heads = num_attention_heads | ||
self.hidden_act = hidden_act | ||
self.initializer_range = initializer_range | ||
self.rms_norm_eps = rms_norm_eps | ||
self.pretraining_tp = pretraining_tp | ||
self.use_cache = use_cache | ||
self.rope_theta = rope_theta | ||
self.rope_scaling = rope_scaling | ||
|
||
super().__init__( | ||
pad_token_id=pad_token_id, | ||
bos_token_id=bos_token_id, | ||
eos_token_id=eos_token_id, | ||
tie_word_embeddings=tie_word_embeddings, | ||
**kwargs, | ||
) |
Oops, something went wrong.