-
Notifications
You must be signed in to change notification settings - Fork 1.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #5678 from FederatedAI/patch-doc-update
Patch doc update
- Loading branch information
Showing
10 changed files
with
298 additions
and
19 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,163 @@ | ||
## Quick Start: A Model Building Demo | ||
|
||
1. install `fate_client` with extra package `fate` | ||
|
||
```sh | ||
python -m pip install -U pip && python -m pip install fate_client[fate,fate_flow]==2.2.0 | ||
``` | ||
after installing packages successfully, initialize fate_flow service and fate_client | ||
|
||
```sh | ||
mkdir fate_workspace | ||
fate_flow init --ip 127.0.0.1 --port 9380 --home $(pwd)/fate_workspace | ||
pipeline init --ip 127.0.0.1 --port 9380 | ||
|
||
fate_flow start | ||
fate_flow status # make sure fate_flow service is started | ||
``` | ||
|
||
2. download example data | ||
|
||
```sh | ||
wget https://raw.githubusercontent.com/wiki/FederatedAI/FATE/example/data/breast_hetero_guest.csv && \ | ||
wget https://raw.githubusercontent.com/wiki/FederatedAI/FATE/example/data/breast_hetero_host.csv | ||
``` | ||
|
||
3. transform example data to dataframe using in fate | ||
|
||
```python | ||
import os | ||
from fate_client.pipeline import FateFlowPipeline | ||
|
||
base_path = os.path.abspath(os.path.join(__file__, os.path.pardir)) | ||
guest_data_path = os.path.join(base_path, "breast_hetero_guest.csv") | ||
host_data_path = os.path.join(base_path, "breast_hetero_host.csv") | ||
|
||
data_pipeline = FateFlowPipeline().set_parties(local="0") | ||
guest_meta = { | ||
"delimiter": ",", "dtype": "float64", "label_type": "int64","label_name": "y", "match_id_name": "id" | ||
} | ||
host_meta = { | ||
"delimiter": ",", "input_format": "dense", "match_id_name": "id" | ||
} | ||
data_pipeline.transform_local_file_to_dataframe(file=guest_data_path, namespace="experiment", name="breast_hetero_guest", | ||
meta=guest_meta, head=True, extend_sid=True) | ||
data_pipeline.transform_local_file_to_dataframe(file=host_data_path, namespace="experiment", name="breast_hetero_host", | ||
meta=host_meta, head=True, extend_sid=True) | ||
``` | ||
4. run training example and save pipeline | ||
|
||
```python | ||
from fate_client.pipeline.components.fate import ( | ||
Reader, | ||
PSI, | ||
HeteroFeatureBinning, | ||
HeteroFeatureSelection, | ||
DataSplit, | ||
Statistics, | ||
FeatureScale, | ||
SSHELR, | ||
Evaluation | ||
) | ||
from fate_client.pipeline import FateFlowPipeline | ||
|
||
|
||
# create pipeline for training | ||
pipeline = FateFlowPipeline().set_parties(guest="9999", host="10000") | ||
|
||
# create reader task_desc | ||
reader_0 = Reader("reader_0") | ||
reader_0.guest.task_parameters(namespace="experiment", name="breast_hetero_guest") | ||
reader_0.hosts[0].task_parameters(namespace="experiment", name="breast_hetero_host") | ||
|
||
# create psi component_desc | ||
psi_0 = PSI("psi_0", input_data=reader_0.outputs["output_data"]) | ||
|
||
data_split_0 = DataSplit("data_split_0", input_data=psi_0.outputs["output_data"], | ||
train_size=0.7, validate_size=0.3, test_size=None, stratified=True) | ||
|
||
# compute metrics for selection | ||
binning_0 = HeteroFeatureBinning("binning_0", train_data=data_split_0.outputs["train_output_data"], | ||
method="bucket", n_bins=10) | ||
statistics_0 = Statistics("statistics_0", input_data=data_split_0.outputs["train_output_data"], | ||
metrics=["min", "max", "25%", "mean", "median"]) | ||
|
||
# run feature selection | ||
selection_0 = HeteroFeatureSelection("selection_0", | ||
method=["iv", "statistics", "manual"], | ||
train_data=data_split_0.outputs["train_output_data"], | ||
input_models=[binning_0.outputs["output_model"], | ||
statistics_0.outputs["output_model"]], | ||
iv_param={"metrics": "iv", "filter_type": "top_k", "threshold": 6, | ||
"select_federated": True}, | ||
statistic_param={"metrics": ["max", "mean"], | ||
"filter_type": "top_k", "threshold": 5, "take_high": False}, | ||
manual_param={"keep_col": ["x0", "x1"]}) | ||
selection_1 = HeteroFeatureSelection("selection_1", | ||
test_data=data_split_0.outputs["validate_output_data"], | ||
input_model=selection_0.outputs["train_output_model"]) | ||
|
||
# scale data | ||
scale_0 = FeatureScale("scale_0", train_data=selection_0.outputs["train_output_data"], method="min_max") | ||
scale_1 = FeatureScale("scale_1", test_data=selection_1.outputs["test_output_data"], | ||
input_model=scale_0.outputs["output_model"]) | ||
|
||
# train with sshe lr | ||
sshe_lr_0 = SSHELR("sshe_lr_0", train_data=selection_0.outputs["train_output_data"], | ||
validate_data=scale_0.outputs["test_output_data"], epochs=3) | ||
|
||
# evaluate both models' output | ||
evaluation_0 = Evaluation("evaluation_0", input_datas=[sshe_lr_0.outputs["train_output_data"]], | ||
default_eval_setting="binary", | ||
runtime_parties=dict(guest="9999")) | ||
|
||
# compose training pipeline | ||
pipeline.add_tasks([reader_0, psi_0, data_split_0, | ||
binning_0, statistics_0, selection_0, selection_1, | ||
scale_0, scale_1, sshe_lr_0, evaluation_0]) | ||
|
||
# compile and train | ||
pipeline.compile() | ||
pipeline.fit() | ||
|
||
# print metric and model info | ||
print (pipeline.get_task_info("sshe_lr_0").get_output_model()) | ||
print (pipeline.get_task_info("evaluation_0").get_output_metric()) | ||
|
||
# save pipeline for later usage | ||
pipeline.dump_model("./pipeline.pkl") | ||
|
||
``` | ||
|
||
5. reload trained pipeline and run prediction | ||
|
||
```python | ||
from fate_client.pipeline import FateFlowPipeline | ||
from fate_client.pipeline.components.fate import Reader | ||
|
||
# create pipeline for predicting | ||
predict_pipeline = FateFlowPipeline() | ||
|
||
# reload trained pipeline | ||
pipeline = FateFlowPipeline.load_model("./pipeline.pkl") | ||
|
||
# deploy task for inference | ||
pipeline.deploy([pipeline.psi_0, pipeline.selection_0, pipeline.scale_0, pipeline.sshe_lr_0]) | ||
|
||
# add input to deployed_pipeline | ||
deployed_pipeline = pipeline.get_deployed_pipeline() | ||
reader_1 = Reader("reader_1") | ||
reader_1.guest.task_parameters(namespace="experiment", name="breast_hetero_guest") | ||
reader_1.hosts[0].task_parameters(namespace="experiment", name="breast_hetero_host") | ||
deployed_pipeline.psi_0.input_data = reader_1.outputs["output_data"] | ||
|
||
# add task to predict pipeline | ||
predict_pipeline.add_tasks([reader_1, deployed_pipeline]) | ||
|
||
# compile and predict | ||
predict_pipeline.compile() | ||
predict_pipeline.predict() | ||
``` | ||
|
||
6. More tutorials | ||
More pipeline api guides can be found in this [link](https://github.com/FederatedAI/FATE-Client/blob/main/doc/pipeline.md) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,80 @@ | ||
## PSI Quick Start | ||
|
||
1. install `fate_client` with extra package `fate` | ||
|
||
```sh | ||
python -m pip install -U pip && python -m pip install fate_client[fate,fate_flow]==2.2.0 | ||
``` | ||
after installing packages successfully, initialize fate_flow service and fate_client | ||
|
||
```sh | ||
mkdir fate_workspace | ||
fate_flow init --ip 127.0.0.1 --port 9380 --home $(pwd)/fate_workspace | ||
pipeline init --ip 127.0.0.1 --port 9380 | ||
|
||
fate_flow start | ||
fate_flow status # make sure fate_flow service is started | ||
``` | ||
|
||
|
||
2. download example data | ||
|
||
```sh | ||
wget https://raw.githubusercontent.com/wiki/FederatedAI/FATE/example/data/breast_hetero_guest.csv && \ | ||
wget https://raw.githubusercontent.com/wiki/FederatedAI/FATE/example/data/breast_hetero_host.csv | ||
``` | ||
|
||
3. transform example data to dataframe using in fate | ||
```python | ||
import os | ||
from fate_client.pipeline import FateFlowPipeline | ||
|
||
|
||
base_path = os.path.abspath(os.path.join(__file__, os.path.pardir)) | ||
guest_data_path = os.path.join(base_path, "breast_hetero_guest.csv") | ||
host_data_path = os.path.join(base_path, "breast_hetero_host.csv") | ||
|
||
data_pipeline = FateFlowPipeline().set_parties(local="0") | ||
guest_meta = { | ||
"delimiter": ",", "dtype": "float64", "label_type": "int64","label_name": "y", "match_id_name": "id" | ||
} | ||
host_meta = { | ||
"delimiter": ",", "input_format": "dense", "match_id_name": "id" | ||
} | ||
data_pipeline.transform_local_file_to_dataframe(file=guest_data_path, namespace="experiment", name="breast_hetero_guest", | ||
meta=guest_meta, head=True, extend_sid=True) | ||
data_pipeline.transform_local_file_to_dataframe(file=host_data_path, namespace="experiment", name="breast_hetero_host", | ||
meta=host_meta, head=True, extend_sid=True) | ||
``` | ||
4. run psi | ||
|
||
```python | ||
from fate_client.pipeline.components.fate import ( | ||
Reader, | ||
PSI | ||
) | ||
from fate_client.pipeline import FateFlowPipeline | ||
|
||
|
||
# create pipeline for training | ||
pipeline = FateFlowPipeline().set_parties(guest="9999", host="10000") | ||
|
||
# create reader task_desc | ||
reader_0 = Reader("reader_0") | ||
reader_0.guest.task_parameters(namespace="experiment", name="breast_hetero_guest") | ||
reader_0.hosts[0].task_parameters(namespace="experiment", name="breast_hetero_host") | ||
|
||
# create psi component_desc | ||
psi_0 = PSI("psi_0", input_data=reader_0.outputs["output_data"]) | ||
|
||
# add training task | ||
pipeline.add_tasks([reader_0, psi_0]) | ||
|
||
# compile and train | ||
pipeline.compile() | ||
pipeline.fit() | ||
|
||
``` | ||
|
||
5. More tutorials | ||
More pipeline api guides can be found in this [link](https://github.com/FederatedAI/FATE-Client/blob/main/doc/pipeline.md) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.