PINN based solver for heat equation
this is a simple 0D time dependent heat equation sovler.
$ \Delta T(t) = \Delta T_0 e^{-r(t-t0)} + Q_0 e^{s(t-t_0)} $
It consider the temperature evolution as a function with two source terms:
- heat source, that increase the temperature
- heat sink, that remove part of the heat source
for the moment we are dealing wiht convection only
$ \Delta T(t) = \Delta T_0 e^{-r(t-t0)} $
this is already available, see the example 0D_cooling_only.py
If we consider an heat source term of the kind:
$ \Delta T(t) = \Delta T_0 e^{-r(t-t0)} + Q_0 e^{s(t-t_0)} $
then look at 0D_heat_source.py
!!! important parameters optimization must be done when you fit your model
- pytorch
- numpy
- matplotlib (for plotting)
- seaborn