Skip to content

Commit

Permalink
Merge pull request #63 from smartlixx/main
Browse files Browse the repository at this point in the history
Sync with overleaf 2024-10 and 2024-11
  • Loading branch information
smartlixx authored Nov 21, 2024
2 parents de7a424 + b294318 commit 84d9a3a
Show file tree
Hide file tree
Showing 5 changed files with 353 additions and 46 deletions.
9 changes: 6 additions & 3 deletions CoLM-Latex/CoLM.preamble.tex
Original file line number Diff line number Diff line change
Expand Up @@ -251,8 +251,10 @@
format+ = \color{gray},
beforeskip = -50pt
% afterskip = 2.0ex plus 0.2ex minus 0.2ex
}
},
section/numberformat = \color{white}
}

\newcommand\sectionprelude{%
\vspace{-4.5ex}
}
Expand All @@ -273,7 +275,8 @@
format+ = \color{gray},
beforeskip = -30pt
% afterskip = 2.0ex plus 0.2ex minus 0.2ex
}
},
subsection/numberformat = \color{white}
}
\newcommand\subsectionprelude{%
\vspace{-4ex}
Expand Down Expand Up @@ -449,7 +452,7 @@
{\large Fang Li, Lu Li, Xianxiang Li, Shaofeng Liu, Xingjie Lu, Nan Wei, Zhongwang Wei, Xiaodong Zeng, Shulei Zhang, Shupeng Zhang} \\[3ex]

\noindent\textbf{\Large Contributing Authors:}\\
{\large Wenzong Dong, Hanwen Fan, Shuyang Guo, Zulong Huang, Hongbin Liang, Wanyi Lin, Zhuo Liu, Jiahao Shi, Aobo Tan, Xionghui Xu}
{\large Wenzong Dong, Hanwen Fan, Shuyang Guo, Lina Huang, Zulong Huang, Hongbin Liang, Wanyi Lin, Zhuo Liu, Jiahao Shi, Aobo Tan, Xionghui Xu}
}

%\setCJKfamilyfont{jamspmi}{MS PMincho}
Expand Down
101 changes: 101 additions & 0 deletions CoLM-Latex/References/References.bib
Original file line number Diff line number Diff line change
Expand Up @@ -4202,4 +4202,105 @@ @book{europeancommission.jointresearchcentre.GHSLDataPackage2023
author = {{European Commission. Joint Research Centre.}},
year = {2023},
file = {European Commission. Joint Research Centre. - 2023 - GHSL data package 2023..pdf:C\:\\Users\\dongw\\Zotero\\storage\\QHAV2IFI\\European Commission. Joint Research Centre. - 2023 - GHSL data package 2023..pdf:application/pdf},
}

@article{daiLakeSchemeCommon2018,
title = {The lake scheme of the Common Land Model and its performance evaluation},
author = {Dai, Yongjiu and Wei, Nan and Huang, Anning and Zhu, Siguang and Shangguan, Wei and Yuan, Hua and Zhang, Shupeng and Liu, Shaofeng},
year = {2018},
journal = {Chinese Science Bulletin},
volume = {63},
number = {28-29},
pages = {3002--3021},
doi = {10.1360/N972018-00609}
}

@article{gaudardOptimizingParameterizationDeep2017,
title = {Optimizing the Parameterization of Deep Mixing and Internal Seiches in One-Dimensional Hydrodynamic Models: A Case Study with {{Simstrat}} v1.3},
shorttitle = {Optimizing the Parameterization of Deep Mixing and Internal Seiches in One-Dimensional Hydrodynamic Models},
author = {Gaudard, Adrien and Schwefel, Robert and Vinnå, Love Råman and Schmid, Martin and Wüest, Alfred and Bouffard, Damien},
year = {2017},
journal = {Geoscientific Model Development},
volume = {10},
number = {9},
pages = {3411--3423},
doi = {10.5194/gmd-10-3411-2017}
}

@article{goudsmit2002application,
title={Application of k-ϵ turbulence models to enclosed basins: The role of internal seiches},
author={Goudsmit, G-H and Burchard, Hans and Peeters, Frank and W{\"u}est, Alfred},
journal={Journal of Geophysical Research: Oceans},
volume={107},
number={C12},
pages={23--1},
year={2002},
publisher={Wiley Online Library},
doi = {10.1029/2001JC000954}
}

@article{ling2015multilevel,
title={A multilevel ocean mixed layer model resolving the diurnal cycle: Development and validation},
author={Ling, Tiejun and Xu, Min and Liang, Xin-Zhong and Wang, Julian XL and Noh, Yign},
journal={Journal of Advances in Modeling Earth Systems},
volume={7},
number={4},
pages={1680--1692},
year={2015},
publisher={Wiley Online Library},
doi = {10.1002/2015MS000476}
}

@techreport{mironovCOSMOTechnicalReport2008a,
title = {{{COSMO Technical Report No}}. 11: {{Parameterization}} of {{Lakes}} in {{Numerical Weather Prediction}}. {{Description}} of a {{Lake Model}}},
shorttitle = {{{COSMO Technical Report No}}. 11},
author = {Mironov, Dmitrii V.},
year = {2008},
institution = {COSMO Consortium for Small-Scale Modelling}
}

@article{noh2011prediction,
title={Prediction of the diurnal warming of sea surface temperature using an atmosphere-ocean mixed layer coupled model},
author={Noh, Yign and Lee, Eunjeong and Kim, Dong-Hoon and Hong, Song-You and Kim, Mee-Ja and Ou, Mi-Lim},
journal={Journal of Geophysical Research: Oceans},
volume={116},
number={C11},
year={2011},
publisher={Wiley Online Library},
doi = {10.1029/2011JC006970}
}

@article{perroud2009simulation,
title={Simulation of multiannual thermal profiles in deep Lake Geneva: A comparison of one-dimensional lake models},
author={Perroud, Marjorie and Goyette, St{\'e}phane and Martynov, Andrey and Beniston, Martin and Annevillec, Orlane},
journal={Limnology and Oceanography},
volume={54},
number={5},
pages={1574--1594},
year={2009},
publisher={Wiley Online Library},
doi = {10.4319/lo.2009.54.5.1574}
}

@article{noh2002simulation,
title={Simulation of more realistic upper-ocean processes from an OGCM with a new ocean mixed layer model},
author={Noh, Yign and Jang, Chan Joo and Yamagata, Toshio and Chu, Peter C and Kim, Cheol-Ho},
journal={Journal of physical oceanography},
volume={32},
number={5},
pages={1284--1307},
year={2002},
publisher={American Meteorological Society},
doi = {10.1175/1520-0485(2002)032<1284:SOMRUO>2.0.CO;2}
}

@article{macdonald2000ModellingMeanVelocity,
title = {Modelling the mean velocity profile in the urban canopy layer},
author = {Macdonald, R. W.},
year = {2000},
journal = {Boundary-Layer Meteorology},
volume = {97},
number = {1},
pages = {25--45},
doi = {10.1023/A:1002785830512}
}
58 changes: 29 additions & 29 deletions CoLM-Latex/人类活动/城市模式.tex
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@ \chapter{城市模式}\label{城市模式}
\section{CoLM城市模式结构与功能}
\esection{CoLM Urban Model Structure and Functions}
不同于传统的城市街谷假设模型,CoLM采用由单栋建筑物组成的建筑群落来表征城市,如图~\ref{fig:CoLM城市模式结构和功能示意图} 所示。
建筑物随机分布,包括建筑物位置及朝向。城市几何参数包括建筑物覆盖度$f_{\rm b}$(即屋顶覆盖面积占比$f_{\mathrm{roof}}$),地面(透水、不透水面)覆盖度$f_{\rm g}$ ($f_{\mathrm{gimp}}$$f_{\mathrm{gper}}$),建筑物高度${\mathrm {H}}$,建筑物高度与建筑物平均边长比$\rm H/L$ (建筑物底面考虑为正方形,边长记为$\rm L$),植被冠层中心高度$h_{\rm v}$,城市树木叶面积指数 LAI 及茎面积指数 SAI,植被(树)覆盖面积比例记为$f_{\rm v}$
建筑物随机分布,包括建筑物位置及朝向。城市几何参数包括建筑物覆盖度$f_{\rm b}$ (即屋顶覆盖面积占比$f_{\mathrm{roof}}$),地面(透水、不透水面)覆盖度$f_{\rm g}$ ($f_{\mathrm{gimp}}$$f_{\mathrm{gper}}$),建筑物高度${\mathrm {H}}$,建筑物高度与建筑物平均边长比$\rm H/L$ (建筑物底面考虑为正方形,边长记为$\rm L$),植被冠层中心高度$h_{\rm v}$,城市树木叶面积指数 LAI 及茎面积指数 SAI,植被(树)覆盖面积比例记为$f_{\rm v}$
其中$f_{\rm b}+f_{\rm g}=1$$f_{\mathrm{gimp}}+f_{\mathrm{gper}}=1$。城市水体覆盖单独表征,其过程考虑为等效湖泊进行计算。

{
Expand All @@ -41,10 +41,10 @@ \section{CoLM城市模式结构与功能}
\frac{\rm H}{\rm L}=\frac{\rm H}{\rm W} \cdot \frac{1-\sqrt{f_{\mathrm{b}}}}{\sqrt{f_{\mathrm{b}}}}, \text { 即 } {\rm L=W} \frac{\sqrt{f_{\mathrm{b}}}}{1-\sqrt{f_{\mathrm{b}}}}
\end{equation}
%
对于同一所在地城市覆盖,单栋建筑物几何参数一致,目前未显式考虑建筑物之间的几何差异,即以上参数代表为统计平均值
对于同一所在地城市覆盖,单栋建筑物几何参数一致,目前未显式考虑建筑物之间的几何差异,即以上参数代表统计平均值

在以下分模块公式推导中,变量下标约定如下:天空($\rm {s}$),地面($\rm {g}$,包括透水面$\rm{gper}$和不透水面$\rm{gimp}$),墙面($\rm{w}$,包括阳面墙$\rm{wsun}$和阴面墙$\rm{wsha}$),植被($\rm{v}$)和屋顶$(\rm{r}$)。$F$表示可视因子,例如$F_{\mathrm{gs}}$表示从地面到天空的可视因子。
$S$表示阴影$\rm H/W$在推导过程中表示为$\rm HW$$\rm H/L$表示为$\rm HL$,总的直射入射和漫射入射太阳辐射能量通量采用单位能量1表示。
$S$表示阴影面积占比$\rm H/W$在推导过程中表示为$\rm HW$$\rm H/L$表示为$\rm HL$,总的直射入射和漫射入射太阳辐射能量通量采用单位能量1表示。

{
\begin{figure}[htbp]
Expand Down Expand Up @@ -484,7 +484,7 @@ \subsection{无植被覆盖时湍流交换过程}\label{无植被覆盖时湍流
其中$C_{\mathrm {D}}=1.2$$\kappa=0.4$为 von K\'arman 常数。

城市冠层内的风速和湍流交换系数同样假设为指数衰减,但衰减系数与植被不同,
采用\citet{masson2000physically}方案,计算为0.5${\rm HW}$。建筑物(屋顶、墙面)边界层阻抗$r_{\rm b}$计算为\citep{oleson2008urban}:
采用\citet{macdonald2000ModellingMeanVelocity}方案,计算为9.6${\lambda_{\mathrm{f}}}$。建筑物(屋顶、墙面)边界层阻抗$r_{\rm b}$计算为\citep{oleson2008urban}:
\begin{equation}
r_{\mathrm{b}}=\frac{\rho_{\mathrm{a}} C_{\mathrm{a}}}{11.8+4.2 u_{\mathrm{e f f}}}
\end{equation}
Expand Down Expand Up @@ -1288,6 +1288,31 @@ \subsection{建筑能耗模型}\label{建筑能耗模型}
总的建筑热排放量为制冷/制暖热排放量加上其过程中浪费的热排放量。需要注意,制冷时,$F_{\mathrm{hac}}+F_{\mathrm{wst}}$作为人为热在室外排放;制热时,仅$F_{\mathrm{wst}}$作为室外人为热排放,此时$F_{\mathrm{hac}}$作为室内空气加热。以上计算的热通量均需乘以$f_{\rm b}$来转化为单位城市面积通量,
$F_{\mathrm{hac}}, F_{\mathrm{wst}}$$F_{\mathrm{ach}}$作为感热项 (源项) 加入到城市湍流交换平衡方程中,参考图~\ref{fig:建筑能耗模型示意图}。

\subsection{交通热}
\esubsection{Traffic Heat}
\begin{mymdframed}{代码}
本节及下节对应的代码文件为\texttt{MOD\_Urban\_LUCY.F90}。
\end{mymdframed}

交通热排放($Q_{\rm v}$, \unit{W.m^{-2}})则根据城市网格内的汽车数量以及行驶路程得到,首先根据城市网格内的人口密度以及各个地区每千人汽车拥有量计算出格点内的汽车数量,然后根据汽车行驶排放的热量以及交通流量的日分布计算出不同时刻的交通热排放。
其数据来源如表~\ref{tab:交通热数据及来源},$Q_{\rm v}$计算如下:
\begin{equation}
Q_{\mathrm{v}}=\frac{\left(V_{\mathrm{c}} E_{\mathrm{c}}+V_{\mathrm{M}} E_{\mathrm{M}}+V_{\mathrm{F R}} E_{\mathrm{FR}}\right) \cdot P \cdot H_{\mathrm{traf}} \cdot D}{3600 \cdot 10^{6}}
\end{equation}
其中$V_{\mathrm {c}}$$V_{\mathrm {M}}$$V_{\mathrm{FR}}$分别为每千人拥有的汽车、摩托车、货车(巴士)的数量,$H_{\mathrm{traf}}$为工作日/休息日某一时间段交通流量,以上数据来源于 \citet{allen2011};$E_{\mathrm {c}}$$E_{\mathrm {M}}$$E_{\mathrm{FR}}$则为三种机动车的排放系数,目前使用 \citet{sailor2004top} 的参数设置(\qty{3975}{J.m^{-1}});
$P$为格点内人口密度 (\unit{pop.km^{-2}}),由LandScan数据得到;$D$为行驶的距离,目前模型设置为50 km。

\begin{table}[htbp]
\centering
\caption{交通热数据及来源}\label{tab:交通热数据及来源}
\begin{tabular}{@{}lll@{}}
\toprule
数据名称 & 来源 & Spatial/administrative unit \\ \midrule
Vehicles density and types & World mapper & All countries and territories \\
Daily vehicle pattern & \citet{Hallenbeck1997} & All countries and territories \\ \bottomrule
\end{tabular}
\end{table}

\subsection{人体代谢热}
\esubsection{Human Metabolic Heat}

Expand Down Expand Up @@ -1316,31 +1341,6 @@ \subsection{人体代谢热}
\end{tabular}
\end{table}

\subsection{交通热}
\esubsection{Traffic Heat}
\begin{mymdframed}{代码}
本节及下节对应的代码文件为\texttt{MOD\_Urban\_LUCY.F90}。
\end{mymdframed}

交通热排放($Q_{\rm v}$, \unit{W.m^{-2}})则根据城市网格内的汽车数量以及行驶路程得到,首先根据城市网格内的人口密度以及各个国家每千人汽车拥有量计算出格点内的汽车数量,然后根据汽车行驶排放的热量以及交通流量的日分布计算出不同时刻的交通热排放。
其数据来源如表~\ref{tab:交通热数据及来源},$Q_{\rm v}$计算如下:
\begin{equation}
Q_{\mathrm{v}}=\frac{\left(V_{\mathrm{c}} E_{\mathrm{c}}+V_{\mathrm{M}} E_{\mathrm{M}}+V_{\mathrm{F R}} E_{\mathrm{FR}}\right) \cdot P \cdot H_{\mathrm{traf}} \cdot D}{3600 \cdot 10^{6}}
\end{equation}
其中$V_{\mathrm {c}}$$V_{\mathrm {M}}$$V_{\mathrm{FR}}$分别为每千人拥有的汽车、摩托车、货车(巴士)的数量,$H_{\mathrm{traf}}$为工作日/休息日某一时间段交通流量,以上数据来源于 \citet{allen2011};$E_{\mathrm {c}}$$E_{\mathrm {M}}$$E_{\mathrm{FR}}$则为三种机动车的排放系数,目前使用 \citet{sailor2004top} 的参数设置(\qty{3975}{J.m^{-1}});
$P$为格点内人口密度 (\unit{pop.km^{-2}}),由LandScan数据得到;$D$为行驶的距离,目前模型设置为50 km。

\begin{table}[htbp]
\centering
\caption{交通热数据及来源}\label{tab:交通热数据及来源}
\begin{tabular}{@{}lll@{}}
\toprule
数据名称 & 来源 & Spatial/administrative unit \\ \midrule
Vehicles density and types & World mapper & All countries and territories \\
Daily vehicle pattern & \citet{Hallenbeck1997} & All countries and territories \\ \bottomrule
\end{tabular}
\end{table}

\subsection{考虑人为热时城市内部湍流交换}
\esubsection{Urban Turbulent Exchange with Anthropogenic Heat}

Expand Down
Loading

0 comments on commit 84d9a3a

Please sign in to comment.