PLEASE use the newer implemetation @ https://github.com/AndreasBriese/breeze32
Kind of historic .....
##"Drain Random from Chaos." ##Breeze - a new family of fast CB-PRNG
####Dr. Andreas Briese
#####2014/11/1
#####eduToolbox@Bri-C GmbH, Sarstedt
Breeze represents a new family of deterministic random number generators aca pseudo random number generators (PRNGs) based on a combination of two or more "logistic maps" (LM) in chaotic state.
See https://github.com/AndreasBriese/breeze for breeze reference implementation in go/golang (x86 / Little-Endian).
WARNING: This code and documentation is written by a non-mathematician & is eventually drawn up in lousy english.
See breeze.pdf for a short description of the algorithm.
History
2nd revision (7/11/2014):
- Breeze32 / Breeze76 removed / replaced by Breeze128/Breeze256
- New Breeze128/Breeze256 structs to accept 128 bit / 256 bit seed/keys and use 6 / 12 logistic maps (LM) functions to produce 128 Byte / 256 Byte output on each roundTrip
- Name-scheme changed
- Seed processing reviewed / splitts uint64 bitwise in three parts: 2× 121, 1×122
- Breeze128 and Breeze256 are intended for use with up to 128bit/256bit input length i.e. with BLAKE2b, SHA2 or SHA3 Hashes; Breeze64_32 & Breeze128_72 are proof of concept schemes (see _breeze._go).
3rd revision (9/11/2014):
- added Breeze512 (16 LMs) to provide length of keyspace: 512bit.
- parenthesis in roundTrip() ()all functions corr; statenumbers corrected to fit the new scheme
Note: Breeze512 is not NIST tested so far, will do in the next days and will provide testresults below.(Its the same new scheme of AIX - should pass) update: Breeze512 passed 2 of three NIST checks (failed once with 94/100 on NonOverlappingTemplate) update: corrected for 1 bit shorter part of the Mantissa solved this NIST failures. (passed 12 NIST-Tests so far)
2014/11/09 20:00 Last revision ensured proper seeding input size for Breeze256/51. Make sure you have the current version running
Note 2014/11/10 Experimental CSPRNG based on Breeze128 added: BreezeCS128. (re-)Seeds from crypto/rand.
4th revision (stable) v.1.1.1:
- Breeze128/CS128/256/512 have number of LMs corresponding to their inner states: 6 / 6 / 12 / 24 (3 inner states from 1 uint64 word input) (This solved a problem of defining a minimum input length)
- Number of Mantissa bits used for output states allways equal or less than last 51 Mantissa bits (Little - Endian)
Important Note 2014/11/7:
Breeze had not (jet) become analysed for cryptographic security (cryptoanalysed)! So far breeze should be considered UNSAFE and it's definitely NOT recommended to use Breeze in a security sensitive or cryptographic context.
Nonetheless Breeze output is intensivly tested for deterministic, uniform distributed random characteristics and all about 40 tested sequence sets (100 seq in set, randomly seeded) of up to 8,ooo.ooo bit length generated by Breeze128(n=20)/Breeze256(n=20) passed the NIST test suite for randomness (see below).
Update 2014/11/10: First results for Breeze512 are incouraging.
###Composition:
The Breeze chaos-based pseudo random number generator CB-PRNG consists of four parts:
- Preparation of seed (Init)
- Initialization (seedr)
- Generator core (roundTrip)
- Composition of output (Byte, ByteMP, XOR, Hash)
The following documentation is intended to give an overview about the functionality of these parts - please inspect the code for more details.
1) Preparation of seed
Breeze128:
The Init() function takes a wide range of input types to processes an uint64-Array that is delivered to the Seedr() function.
- int, uint8/16/32/64, int8/16/32/64 is typecasted and copied directly to seedr()
- float32/64 are bitwise upshifted by 8/11 bits and feeded to seedr()
- string/[]byte is processed by sipHash's (see sipHash.go) compression function returning two uint64
Breeze256/Breeze512:
The Init() function takes a string/[]byte of length 8 Byte or an []uint64 of length 1
BreezeCS128:
Autoseeds from go/golang crypto/rand XOR bytewise with time.Now().Nanosecond(). RoundTrip() will reseed from go/golang crypto/rand XOR bytewise with time.Now().Nanosecond() too.
2) Initialization
The Seedr() function takes an []uint64 and splits each field into three fragments (2 × 21, 1 × 22), that are used to calculate three startseeds running with two logmap functions. Each startseed is limited to 0..1<<23 omitting "pathological" values and type-casted to float64 before inverted (1/startseed). The number of output states roughly determines the number of startrounds within initialization.
3) Generator core
The roundTrip() function calculates the next results of the two (or more) logistic map equations. Each equation xn = k ⋅ xn-1 ⋅ (1 - xn-1) has a different k with 3.56995 < k < 3.82843 and 3.82843 < k <= 4.0 to generate a chaotic state with 0 < x < 1 (see: startseed preparation). The calculation results are mirrored at 1.0 (1-state) and interchanged within the inner states of the two (ore more) map functions. They form the actual two (or more) states of the generator. Their normalized mantissa ("significand field") is the source of entropy from which four (or more) uint64 fields derive, that form the byteregister of breeze. In between a bitshift variable is used to enhance variability of the byteregister-generation and furthermore the byte registers and inner states are transposed after each roundTrip to ensure that all registers profitize directly from the generator entropy.
roundTrip() checks for pathological state == 0 and will in case automatically reseed from previous states. In BreezeCS128 CSPRNG roundTrip() will autoreseed from go/golang crypto/rand XORed bytewise with time.Now().Nanosecond() instead. (Probability for autoreseeding was about (6 LMs) 2:10^10 from emperical observations (18 in 100 within 10^9 roundTrips of 6 LMs))
4) Composition of output (Byte, ByteMP, XOR, ShortHash)
Breeze provides examplary output formats for different purposes.
- the Byte(&byt) function sets the variable byt to the next byte (uint8/byte) from breeze's byte register.
- the ByteMP(&byt) function acts similar as Byte() but provides a mutex.Lock/Unlock to ensure thread-/multiprocessor-safety (about 4-5 times slower).
- RandIntn() returns a random uint64
- RandDbl() returns a float64 (0,1] (uniform random distribution)
- RandNorm() returns a float64 (0,1] (normal (gauss) distribution)
- XOR(&out, &in, &key) seeds the breeze generator with the key bytes and bytes of in are xored with the generator bytes and an error.
- ShortHash(&m, hashlen) returns a hash of length hashlen deriving from multiple roundsTrips and an error.
Note: Byte / ByteMP do not check if breeze had been initialized! Make sure you did so, before calling!
Note: RandIntn and RandDbl are thread/multiprocessing save (mutex.locked). Must be initialized before call. This comes at the cost of about 80 times slower number generation than Byte() and about 8 times (sic! from 8 bytes) slower than ByteMP().
Note: ShortHash is NOT intended to hash files - it is foremost a internal function to init breeze's PRNG for XOR. Hashes should be collisionresistent as far as the source and the hash output lies within the keyspace length. For any input longer than keyspace sipHash's fold&compress is used: the folding function derives directly from Dmitry Chestnykhs go implementation of SipHash-2-4 ( https://github.com/dchest/siphash ) "a fast short-input PRF created by Jean-Philippe Aumasson and Daniel J. Bernstein" ( https://131002.net/siphash/ ). The actual breeze code utilizes sipHash's fold/compressor to drains 2 × uint64 out of the []byte or string provided to seed the PRNG if the seed is longer than keyspace. It must be assumed therefore that ShortHash() produces collisions with longer inputs.
Note: XOR() and ShortHash() do NOT reset the generator function automatically. Make sure this is the desired state by your programming logic or use the Reset() function before calling XOR/ShortHash.
####Breeze internals
| Breeze128 | Breeze256 | Breeze512 | BreezeCS128 | ---|---|---|---|---| keyspace | [2]uint64 128bit | [4]uint64 256bit | [8]uint64 512bit | auto-/reseed crypto/rand 128bit | no. of logistic maps (LM) | 6 LM | 12 LM | 24 LM | 6 LM | no. of internal LM states | 6 | 12 | 24 | 6 | output states | [16]uint64 | [32]uint32 | [64]uint32 | [16]uint64 | used memory (struct) | ~186 Byte | ~362 Byte | ~715 Byte | ~186 Byte | temp memory alloc | ~234 Byte | ~458 Byte | ~907 Byte | ~250 Byte |
(temp memory alloc: estimation from roundTrip() mem use; actual use might be higher)
####Tests
The testframework beside NIST statitical suite can be found her: https://github.com/AndreasBriese/breezeTests
###Install and use
Package breeze has no external dependancies.
Install using go get.
go get github.com/AndreasBriese/breeze
Import the module within the import header of your code:
package main
import "github.com/AndreasBriese/breeze"
import (
"bytes" // byte comparison in the XOR exmaple
"fmt" // printout
"io/ioutil" // readfile in the XOR example
)
func main() {
//
// drain 1000 random bytes from chaos
//
var bmap128 breeze.Breeze128
err := bmap128.Init("12345678")
if err != nil {
fmt.Println(err)
panic(1)
}
resultI := make([]uint64, 1000)
for i, _ := range resultI {
resultI[i] = bmap128.RandIntn()
}
fmt.Println("RandIntn", resultI[0:20])
var bmap256 breeze.Breeze256
bmap256.Init([]uint64{uint64(1234), uint64(12345), uint64(123456), uint64(1234567)})
resultF := make([]float64, 1000)
for i, _ := range resultF {
resultF[i] = bmap256.RandDbl()
}
fmt.Println("RandDbl", resultF[0:20])
var bmap128_2 breeze.Breeze128
bmap128_2.Init([]uint64{uint64(1<<64 - 1), uint64(1<<32 - 1)}) // []uint64 will be "folded"; effective keyspace = 64bit
// resultF := make([]float64, 1000)
for i, _ := range resultF {
resultF[i] = bmap128_2.RandNorm()
}
fmt.Println("RandNorm", resultF[0:50])
//
// hash a string
//
wordToHash := "Alice and Bob are in love."
var hmap256 breeze.Breeze256
hash, err := hmap256.ShortHash(wordToHash, 32) // second parameter for length of hash in bytes
if err != nil {
fmt.Println(err)
panic(1)
}
fmt.Printf("\nShortHash without Init() 32 Byte: %x\n", hash)
// get the same hash result
hmap256.Reset() // will reset all internal states
hash, err = hmap256.ShortHash(wordToHash, 32) // second parameter for length of hash in bytes
if err != nil {
fmt.Println(err)
panic(1)
}
fmt.Printf("ShortHash Reset() & without Init() 32 Byte: %x\n", hash)
// use hash with previous initialization results in different hash
var hhmap512 breeze.Breeze512
err = hhmap512.Init(wordToHash) // Init() sets/changes all internal states and bitshift but without resetting !
if err != nil {
fmt.Println(err)
panic(1)
}
hash, err = hhmap512.ShortHash(wordToHash, 32) // second parameter for length of hash in bytes
if err != nil {
fmt.Println(err)
panic(1)
}
fmt.Printf("ShortHash with Init() 32 Byte: %x\n", hash)
// this will give you the same hash again
hhmap512.Reset() // will reset all internal states
err = hhmap512.Init(wordToHash) // Init() sets/changes all internal states and bitshift but without resetting !
if err != nil {
fmt.Println(err)
panic(1)
}
hash, err = hhmap512.ShortHash(wordToHash, 32) // second parameter for length of hash in bytes
if err != nil {
fmt.Println(err)
panic(1)
}
fmt.Printf("ShortHash with Reset() & Init() 32 Byte: %x\n", hash)
err = hhmap512.Init(wordToHash) // Init() sets/changes all internal states and bitshift but without resetting !
if err != nil {
fmt.Println(err)
panic(1)
}
hash, err = hhmap512.ShortHash(wordToHash, 32) // second parameter for length of hash in bytes
if err != nil {
fmt.Println(err)
panic(1)
}
fmt.Printf("ShortHash Init() without Reset() will be different: %x\n", hash)
//
// XOR bytes from a file
//
in, err := ioutil.ReadFile("./tests.go")
if err != nil {
fmt.Println(err)
panic(1)
}
out := make([]byte, len(in))
key := []byte("xor my file")
var lmap128 breeze.Breeze128
err = lmap128.XOR(&out, &in, &key)
if err != nil {
fmt.Println(err)
panic(1)
}
fmt.Println("\nencode XOR without Init(): in and out are the same:", bytes.Equal(out, in)) // false
lmap128.Reset()
lmap128.XOR(&out, &out, &key)
fmt.Println("decode XOR without Init(): in and out are the same again:", bytes.Equal(out, in), "\n") // true
// Have in mind, using Init() before XOR will result in a totally different result
var lmap256 breeze.Breeze256
err = lmap256.Init(wordToHash) // sets all internal states and bitshift but without resetting !
if err != nil {
fmt.Println(err)
panic(1)
}
lmap256.XOR(&out, &in, &key)
fmt.Println("encode XOR with Init(): in and out are the same:", bytes.Equal(out, in)) // false
lmap256.Reset()
lmap256.Init(wordToHash) // sets all internal states and bitshift but without resetting !
lmap256.XOR(&out, &out, &key)
fmt.Println("decode XOR with Init(): in and out are the same again:", bytes.Equal(out, in)) // true
lmap256.Reset()
lmap256.Init(wordToHash)
lmap256.XOR(&out, &in, &key)
fmt.Println("\nencode XOR with Init(): in and out are the same:", bytes.Equal(out, in)) // false
lmap256.Reset()
// lmap256.Init(wordToHash) // leaving out Init() will break the xor decoding
lmap256.XOR(&out, &out, &key)
fmt.Println("decode XOR without Init() will fail: in and out are the same:", bytes.Equal(out, in)) // false
}
###Speed
The primary aim of investigating into CB-PRNG was a need for a second PRNG of comparable speed beside Daniel J. Bernsteins Salsa20 in a bytewise XOR mixing scheme for steganography.
The breeze candidates Breeze128, Breeze256, Breeze512 and BreezeCS128 were compared to Go's math.random, Go's crypto/rand, complimentary-multiply-with-carry (adapted from http://de.wikipedia.org/wiki/Multiply-with-carry) and salsa20 (https://code.google.com/p/go/source/browse/salsa20/salsa20.go?repo=crypto with an additional byte draining function) regarding their speed of random byte emission (10.000-10,000.000.000 byte) and with salsa20 about XORing speed of 100MB and 1GB files using Core2Duo, Xeon, i5 and i7 powered PCs and laptops with OSX 10.6-10.9.
This is the output from an Apple MBPro 2.4 GHz i7 8GB RAM running MacOSX 10.8.5; go1.3 darwin/amd64 compiled with i686-apple-darwin11-llvm-gcc-4.2 (GCC) 4.2.1 (Based on Apple Inc. build 5658) (LLVM build 2336.11.00) using 1 CPU at runtime:
Streamlength (bytes): 100000000
Initialization timings
cmwcRand.init 23175 ns/op
salsa.init 25473 ns/op
breeze128.init 17652 ns/op
breezeCS128.init 422651 ns/op
breeze256.init 22541 ns/op
breeze512.init 38263 ns/op
Timings excl. initialisation
round 0
crypto/rand 66.91293224 ns/op
math/rand 33.64623132 ns/op
breeze128 5.24251114 ns/op
breezeCS128 4.94863994 ns/op
breeze256 5.19408767 ns/op
breeze512 5.21904625 ns/op
cmwcRand 7.96650826 ns/op
salsa 10.92033298 ns/op
breeze128 mutex 21.09652961 ns/op
breeze256 mutex 21.16416018 ns/op
breeze512 mutex 21.13883682 ns/op
cmwcRand mutex 23.15235098 ns/op
salsa mutex 25.36474519 ns/op
round 1
crypto/rand 66.37308781 ns/op
math/rand 33.74983039 ns/op
breeze128 5.30179365 ns/op
breezeCS128 4.91731842 ns/op
breeze256 5.25770132 ns/op
breeze512 5.3275761 ns/op
cmwcRand 8.07043497 ns/op
salsa 8.32984127 ns/op
breeze128 mutex 21.34504535 ns/op
breeze256 mutex 21.62477203 ns/op
breeze512 mutex 21.46773236 ns/op
cmwcRand mutex 23.47656207 ns/op
salsa mutex 25.79886328 ns/op
round 2
crypto/rand 66.27560318 ns/op
math/rand 33.65269396 ns/op
breeze128 5.21549991 ns/op
breezeCS128 4.85845871 ns/op
breeze256 5.20661327 ns/op
breeze512 5.21153689 ns/op
cmwcRand 7.92343511 ns/op
salsa 8.26453883 ns/op
breeze128 mutex 21.10411362 ns/op
breeze256 mutex 21.24844821 ns/op
breeze512 mutex 21.10982657 ns/op
cmwcRand mutex 23.27960155 ns/op
salsa mutex 25.33713722 ns/op
file Xoring (1GB)
Breeze128 XOR: 2.808338704 s/GB 1000000000
in == out : false
Breeze128 XOR: 2.816419428 s/GB
in == out : true
Breeze256 XOR: 2.778572044 s/GB 1000000000
in == out : false
Breeze256 XOR: 2.783461739 s/GB
in == out : true
Breeze512 XOR: 2.864301834 s/GB 1000000000
in == out : false
Breeze512 XOR: 2.860537387 s/GB
in == out : true
salsa XOR: 4.728022675 s/GB 1000000000
in == out : false
salsa XOR: 4.717172578 s/GB
in == out : true
hash timings ( n = 1000 )
breeze128 hash 1824.243 ns/op
breeze256 hash 4430.815 ns/op
breeze512 hash 14234.625 ns/op
sipHash-2-4 148.467 ns/op
md5 hash 1954.732 ns/op
sha256 hash 4051.646 ns/op
sha512 hash 3243.129 ns/op
Initialization time of Breeze128/256/512 depends on the number of startrounds roundTrips() to shift through the internal byteregister once. XORing competes well with salsa20/8. Hash is slow because of much overhead - will be looked at in future.
####LICENSE
Breeze is published with a MIT-TYPE LICENSE with an ADDITIONAL RESTRICTIVE CLAUSE about Breeze implementations in hardware
Copyright (c) 2014 Andreas Briese [email protected], 31157 Sarstedt, Gernmany
ADDITIONAL RESTRICTIVE CLAUSE: Any use of this software, modifications of this software or modifications or extensions of the underlying principle of the Breeze RNG implemented IN HARDWARE needs to be explicitly licensed by the copyright holder Andreas Briese (contact: abedutoolbox.de).
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
####Note: The purpose of this modified MIT LICENSE with ADDITIONAL RESTRICTIVE CLAUSE shall allow a unrestricted use of Breeze by developers on any software platform. In case of the implementation of Breeze or it's underlying logic in RNG hardware (for example but not limited to encryption chips or PIN number generators) the producer of such hardware needs to document the proper implementation to become licensed. This takes into account that improper or wrong implementation of Breeze in hardware might decrease the quality of the the resulting random number stream.
Furthermore i'ld really appreciate to have less problems to feed my family in future :-))
###Some background information about the evolution of breeze
(Please refer to the warning in the site header!)
The logistic map (LM) seems to be a well studied phenomenom (https://en.wikipedia.org/wiki/Logistic_map for more information). The formula for the logistic map
xn = kxn-1-xn-12 = kxn-1 ⋅ (1-xn-1)
will get (in theorie) into chaotic state at 0 < x < 1 and 3.56995 < k < 3.82843 and at 3.82843 < k <= 4.0 (https://en.wikipedia.org/wiki/Logistic_map) and (in a theoretically unfinite space of real numbers) all following results will be > 0 and < 1 and therefore conserve the chaotic state ad infinitum. It's impossible to predict the next outcome from the input value. Furthermore one can not forcast if the next outcome will be larger or smaller than the input value without actually calculating. LM behaviour in chaotic state is consequently very "randomnous".
Sounds interesting for random number generation? A number of attemps had been made to implement software PRNG based on the logistic map and such a unpredictable behaviour might also qualify for cryptographic use in particular.
Computational developements of such algorithms were referred to as "chaos based pseudo random number generators" or CB-PRNGs in literature (see below).
It turned out that mathematicians theoretical real numbers and float arithmetics in software differ radical. Computational resources are limited in practice and consequently real numbers need to become fitted to bits and bytes. Reals are usually implemented as floating point numbers defined by IEEE 754 (IEEE Standard for Floating-Point Arithmetic (IEEE 754)) (leaving beside relativly slow decimal floating point number formats) and floating point arithmentics are speeded up by proper maschine code. But these floats are not infinite and restricted to their properly rounded representation regulated by IEEE 754 to prevent under- or overflow the capacity of the given format.
The difficulties to deal with the restrictions of IEEE float format when calculating the logistic map are discussed in much detail in this publications: Shujun Li, 2008: "When Chaos Meets Computers" http://arxiv.org/abs/nlin/0405038v3 and more recent and discussing logistic map in particular: K. J. Persohn, R. J. Povinelli, 2012: Analyzing Logistic Map Pseudorandom Number Generators for Periodicity Induced by Finite Precision Floating-Point Representation http://povinelli.eece.mu.edu/publications/papers/chaos2012.pdf (Please refer to this text also to find references to important approaches to use chaotic states in PRNG until 2012).
Persohn and Povinelli conclude in the above publication: ''Real number implementations in finite precision are detrimental to the periodicity of chaotic PRNGs. Ignoring this reality makes chaos-based PRNGs deceptively appealing for random applications. (Annot.: Their presented analysis package) FPPC algorithm can comprehensively analyze the periodicity of truncated real number series generated by a recurrence relation. Using these results one can make informed decisions about the appropriate use of a chaotic PRNG with respect to its conventional counterparts. The results revealed about the logistic map do not appear competitive with conventional PRNGs.''
Seems like computational representation of chaos-based models in general and logistic map (LM) for PRNGS in particular are dead - so what?
They are'nt dead anyway:
See below for a list of actual approaches to improve chaos based PRNG (CB-PRNG) period length is mixing CB-RNGs with multiple recursive generators (MRGs) to enhance period length and avoid the predictability of MRG output for use in cryptography:
S. Shagufa and K. Geetha, 2013: "Period Extension and Randomness Enhancement Using High-Throughput Reseeding-Mixing PRNG" http://www.urpjournals.com/tocjnls/2_13v3i3_2.pdf ;
M. K. Kumar, S. A. Hussain and S. F. Basha, 2013: "A New Design for High Throughput Linear PRNG" http://www.ijareeie.com/upload/2013/december/27_ANewDesign.pdf;
S. D. Babu and P. M. Kumar, 2013: "Design of a New Cryptography Algorithm using Reseeding-Mixing Pseudo Random Number Generator" http://www.ijitee.org/attachments/File/v2i5/E0631032413.pdf
S. Tazyeen, G.S. Biradar, M. Patil, 2014: "DESIGN OF A NEW CRYPTOGRAPHIC ALGORITHM USING HIGH- THROUGHPUT RM-PRNG" http://www.ijtre.com/manuscript/2014011017.pdf
Okay, but logistic maps (LM) alone won't do it.
Really?
No, let's take a closer look. What are the central arguments against their use in computation of random numbers?
- LM produce short periods (resulting from float rounding)
- There are 'pathological seeds' in LM that lead to fixed output
Let's take an example:
Logistic map with k = 4; 0 < x < 1 ==> xn = 4xn-1⋅(1 - xn-1) [1]
a.) Deadlocks are x = 1/4 and x = 3/4 leading to output: 0.75 .. 0.75 .. 0.75 ..
set xn-1 = 1/4 : results in 4 ⋅ 1/4 ⋅ (1 - 1/4) = 1 ⋅ 3/4 = 3/4 = 0.75
set xn-1 = 3/4 : results in 4 ⋅ 3/4 ⋅ (1 - 3/4) = 3 ⋅ 1/4 = 3/4 = 0.75
b.) Additionally a deadlock with x = 1/2 output is: 1.0 .. 0 .. 0 .. 0 ..
set xn-1 = 1/2 : results in 4 ⋅ 1/2 ⋅ (1 - 1/2) = 2 ⋅ 1/2 = 2/2 = 1.0 .. => 4 ⋅ 1 ⋅ (1 - 1) = 0
c.) If x becomes very small, the float rounding might result in x = 0 which blocks the map function;
d.) Empirically long sequences of rounded numbers show up with lim 1 or lim 0; if using the CB-PRNG as bit-emitter based on up-down or smaller/larger 0.5 this will result in disturbance of the random sequence by high repetition counts of 0000.. or 1111...
a.), b.) and c.) can be mastered by reseeding the map conditionally, but fighting d.) brings up a tautology: Since the map is in chaotic state, no prior indicator is given (as far as i know) before entering one of the above deadlocks or "limited chaotic" states caused by floating point arithmetics.
Solution for c.)
(S1) Reseed the map if a map results in zero
This is my solution for d.):
Implement another "permanent reseeding" of the logistic maps resulting in:
xn = k⋅(1 - xn-1) ⋅(1 - (1 - xn-1))
(S2) After each calculation reseed the map with 1-x ("mirror x at 1")
This approach would break the map in theoretical math, but if done in the computational universe of IEEE 754 floats each substraction step may or may not cause "cancelation" of LSB and provoce rounding errors --> the computed map remains in chaotic state.
Here i present a new mathematical 'dilemma' for IEEE 754 float arithmetics :-)
'IEEE 754 dilemma' for float numbers d with 0 < d < 1: mostly x != 1 - (1 - x)
but if and only if x can be represented exactly by 1/2 + 1/2^2+ .. + 1/2^len(mantissa)
then x == 1 - (1 - x)
Another example:
Logistic map with k = 3.9; 0 < x < 1 ==> xn = 3.9⋅xn-1 ⋅(1 - xn-1) [2]
a.) Yes, we have deadlocks but NOT x = 1/4 and x = 3/4 as in [1]
set xn-1 = 1/4 : results in 39/10 ⋅ 1/4 ⋅ (1 - 1/4) = 39/40 ⋅ 3/4 = 117/1600 != 0.75
set xn-1 = 3/4 : results in 39/10 ⋅ 3/4 ⋅ (1 - 3/4) = 117/10 ⋅ 1/4 = 117/40 != 0.75
b.) No deadlock at x = 1/2 -> output is NOT : 1.0 .. 0 .. 0 .. 0 .. as in [1]
set xn-1 = 1/2 : results in 39/10 ⋅ 1/2 ⋅ (1 - 1/2) = 39/10 ⋅ 1/2 = 39/20 != 1.0
c.) If x becomes very small, the float rounding might result in x = 0 ; solved by (S1)
d.) Long sequences of rounded numbers with lim 1 or lim 0 ... ; solved by (S2)
... ding-dong ...And this is the solution for a.), b.):
(S3) Combine two (or more) logistic map functions with different k-values
by "reseeding" them from each other
###Expand the mining capacity of the logistic map (LM)
Some approaches use LM by emitting one bit from each calculation result. This can be done by evaluating the difference to the preceeding result (higher/lower) or by evaluating x >= 0.5 (limis logmap results/length). Persohn and Povinelli (2012) resumed, CB-PRNG proved to be ineffective and slow compared to classical LCG - i guess, that is an appropriate resumee if looking at the above mentioned bit generation scheme.
But IEEE 754 double floating point values >0 and <1 can store more than one bit of entropy from chaos. Breeze uses 28 to 51 bits of the normalized mantissa (“significand field”) of each logistic map output. Since this is smaller than uint64's capacity two (or more) map states are combined to compute output states using an ARX algorithm.
If i did not misunderstood the concept of entropy, this means Breeze is based on min. entropy of number-of-LM × 228 up to max. number-of-LM × 250 depending on roundTrips the internal state of bitshift.
Breeze(CS)128 / Breeze256 / Breeze 512 emit 16 / 32 / 64 uint64 (128 / 256 / 512 Bytes) deriving from each roundTrip results by permutative shifting and xoring (expanding) the last outputs from the logistic map functions.
###Preliminary assumptions regarding cryptographic qualities of Breeze
Important Note 2014/11/1:
Breeze had not (jet) become analysed for cryptographic security (cryptoanalysed) by the community! (I would very much appriciate, if you, the reader, would like to do some analysis)
So far breeze should be considered UNSAFE and it's definitely NOT recommended to use Breeze in a security sensitive or cryptographic context!
####- - -
The following aspects are discussed here now (will be extended):
- Random properties of output
- Input/Seed-recovery from output stream
- Guessing the next output from previous output
- Input/Seed-recovery with insights into all internal states
- Calculate the next output with insights into all internal states
1.) Random properties of output
Breeze is designed to emit an stream with uniform random characteristics, that is indistinguishable from a uniform random function output. Following tests had been performed in the last weeks:
- Tests for randomness of the implementation of the logistic maps:
Since Breeze LMs are deterministic regarding their seed value(s) the results (state) of each LM were recorded continously and checked for repetitions. This was performed with about 5000 sequences of up to 1,000,000.000 byte length (see breezetest.go for the test implementation).
- Tests for proper implementation of the output module(s):
The same was done for the output []uint64 and these were moreover checked for combination repetitions.
- Additional tests of the emitted bytes:
Breeze emitted bytes were sorted into 256 baskets and the frequencies of values lower/higher than 128 were calculated (see breezetest.go for the test implementation).
- NIST Test suite (v. sts-2.1.2 including changes of July 9, 2014)
About 40 tested sequence sets (100 seq in set, randomly seeded) of up to 8,ooo.ooo bit length generated by Breeze128(n=20)/Breeze256(n=20) passed the NIST test suite for randomness (see below). Some sequences up to 1^10 byte were feeded into NIST statistical analysis, but the tests took hrs to days and therefore testing longer sequences with adequat setsize obviously overflows my computational capacities. (Feel free to contribute by testing :-)
2.) Input/Seed-recovery from an output stream
Breeze is a deterministic RNG. That means, that any call of Breeze with the same seed (deriving from input) shall & will produce exactly the same sequence of random bytes. With inits within the keyspace (see below) no collisions occur. And because these are deriving (deterministic) from the inner states of the LMs also the states at the x'th roundTrip should be exactly the same, if the same seed at call is used.
The important question from a cryptoanalytic view would be, if given an attacker has (a) a part or (b) even the whole sequence of output he could guess the (A) inner state or (B) the input or seed at initialization can be assessed by any means easier than brute force attack (100% of the keyspace).
The seed of the actually implemented Breeze128 is up to 128bit; Breeze256 uses up to 256bit and Breeze512 seeds from 512bit. This scheme can easily be extended.
BreezeCS128 seeds from 128bit urandom provided by go/golang crypt/random XORed with time.Now().Nanosecond() see csrand.go for details. If one of the states rounded to Zero, BreezeCS128 reseeds again from urandom.
That said, even if you can provide many types of even longer keys to breeze, Breeze128's internal keyspace is effectivly 128 bit and Breeze256 has a keyspace of 256 bit; Breeze512's keyspace is 512bit. Bruteforce would need at minimum 2128 / 2256 / 2 512 different calls of Breeze128 / Breeze256 / Breeze512 to recover an input/key from output, given the attacker has the full output and no additional (pre- or re-)seeding using the Init() function was done.
Best practice for stream cipher use is twofold (i.e. Breeze128):
- seed breeze with a key within keyspace (i.e. Breeze128 []uint64{uint64, uint64}),
- XOR(in, out, key) with a key string | []byte of arbitrary length (best:==16 Bytes for low collision) or []uint64{uint64, uint64}
State-recovery from output means to guess all internal LM states from the output bytes. This should be a 'hard problem' because the output bytes derive from three or more mixed internal states mantissa fragments (steared by the internal variable bitshift [0..23] and always less than 52 bits to ensure information loss from internal states within the process) that are combined by an ARX algorithm and xored with their previous states. Furthermore with each rountTrip the inner states and output states are alternated (state[0]<-state[1]; state[1]<-state[2] ... state[last]<-state[0]).
BreezeCS128 follows the same logic as Breeze128 but uses Go/golangs interface to urandom (crypto/rand) XORed with time.Now().Nanosecond() for seeding as a CSPRNG instead. Auto-reseeding within roundTrip() uses the same approach (see module csrand.go).
3.) Guessing next output from previous
Taking into account the chaotic nature of logistic maps and the existings proves about breeze's uniform random output it should be a 'hard problem' to predict future output from breeze with a higher propability than 1:127 for each future byte. (Annot.: I would really like to have somebody else looking at this estimate; did i interprete the birthday paradox properly?)
4.) Input/Seed-recovery with insights into all internal states
Even if an attacker knows
- all LMs k-values,
- all actual LMs internal states,
- the actual assignment of internal states to LMs (S3),
- internal bitshift-value (∼ 1/3 number of roundTrips mod 23; -> output composition).
Then the attacker will reach the point, that he cannot reverse calculate the preceeding state because of (S2) and the above 'IEEE 754 dilemma':
'IEEE 754 dilemma' for float numbers d with 0 < d < 1: mostly x != 1 - (1 - x)
but if and only if x can be represented exactly by 1/2 + 1/2^2+ .. + 1/2^len(mantissa)
then x == 1 - (1 - x)
(S2) results in a "hard to recover" information loss each time of roundTrip. In this distinct the breeze algorithm is likely to be an "one-way function".
5.) Calculate the next output with insights into all internal states
If an attacker got all the above mentioned internal information he will be able to compute all future output.
This is not the case for BreezeCS128 that ocassionally autoreseeds from urandom (crypto/rand). Here an attacker would be able to calculate outputs until next autoreseeding is started because of a internal state was rounded to Zero (from observation once about 10^10 roundTrips).
NIST sts-2.1.2 Breeze128
100 samples with 8,000.000 bits (10**6 bytes)
------------------------------------------------------------------------------
RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF PASSING SEQUENCES
------------------------------------------------------------------------------
generator is <../128N_1823668462.bin>
------------------------------------------------------------------------------
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPORTION STATISTICAL TEST
------------------------------------------------------------------------------
9 8 14 9 14 10 7 15 7 7 0.437274 100/100 Frequency
9 10 13 12 8 7 12 10 8 11 0.935716 98/100 BlockFrequency
7 5 9 9 19 13 8 11 7 12 0.108791 100/100 CumulativeSums
9 10 12 7 13 1 16 17 8 7 0.016717 100/100 CumulativeSums
14 9 7 5 14 15 10 8 13 5 0.162606 99/100 Runs
12 8 12 11 13 8 12 11 6 7 0.779188 100/100 LongestRun
13 10 5 14 6 10 13 13 10 6 0.350485 99/100 Rank
11 8 12 12 5 8 11 12 9 12 0.816537 98/100 FFT
9 11 12 14 9 13 9 2 11 10 0.366918 97/100 NonOverlappingTemplate
13 6 10 10 9 10 7 9 12 14 0.779188 96/100 NonOverlappingTemplate
7 10 10 4 12 12 11 14 12 8 0.554420 98/100 NonOverlappingTemplate
8 7 10 9 11 17 7 13 8 10 0.474986 100/100 NonOverlappingTemplate
9 11 15 10 6 7 12 10 9 11 0.759756 99/100 NonOverlappingTemplate
4 7 14 11 11 11 7 10 12 13 0.474986 100/100 NonOverlappingTemplate
12 7 10 13 10 9 9 13 8 9 0.924076 100/100 NonOverlappingTemplate
9 15 13 4 11 9 11 7 12 9 0.455937 100/100 NonOverlappingTemplate
11 12 10 14 7 10 8 11 8 9 0.911413 99/100 NonOverlappingTemplate
9 12 14 8 9 6 9 13 9 11 0.798139 100/100 NonOverlappingTemplate
17 8 16 9 10 6 6 11 11 6 0.122325 99/100 NonOverlappingTemplate
12 10 5 12 11 17 6 11 5 11 0.181557 99/100 NonOverlappingTemplate
10 13 7 7 10 11 15 7 9 11 0.699313 100/100 NonOverlappingTemplate
8 12 8 7 8 13 13 10 12 9 0.851383 98/100 NonOverlappingTemplate
7 14 8 13 14 9 9 10 8 8 0.699313 100/100 NonOverlappingTemplate
10 10 11 13 8 12 9 13 5 9 0.798139 98/100 NonOverlappingTemplate
8 13 8 12 6 11 11 13 9 9 0.834308 98/100 NonOverlappingTemplate
6 7 8 14 9 11 16 15 4 10 0.108791 99/100 NonOverlappingTemplate
9 7 6 6 13 12 10 9 13 15 0.437274 99/100 NonOverlappingTemplate
6 15 10 11 13 11 5 8 12 9 0.474986 100/100 NonOverlappingTemplate
13 6 14 12 10 14 8 4 9 10 0.334538 99/100 NonOverlappingTemplate
11 9 18 11 5 9 15 12 5 5 0.045675 96/100 NonOverlappingTemplate
14 11 6 13 10 10 10 7 11 8 0.779188 100/100 NonOverlappingTemplate
10 9 6 10 15 15 10 9 7 9 0.554420 98/100 NonOverlappingTemplate
10 10 15 11 11 5 7 12 11 8 0.637119 99/100 NonOverlappingTemplate
7 15 12 8 9 7 9 4 14 15 0.162606 99/100 NonOverlappingTemplate
13 8 5 9 14 9 13 8 13 8 0.514124 99/100 NonOverlappingTemplate
10 10 10 3 16 12 6 13 13 7 0.153763 99/100 NonOverlappingTemplate
7 7 10 11 9 14 10 10 10 12 0.911413 99/100 NonOverlappingTemplate
8 8 16 9 7 8 12 9 11 12 0.657933 100/100 NonOverlappingTemplate
10 7 9 11 8 15 8 10 11 11 0.867692 98/100 NonOverlappingTemplate
7 11 11 10 6 14 10 12 9 10 0.851383 100/100 NonOverlappingTemplate
8 15 11 10 11 6 16 11 5 7 0.224821 100/100 NonOverlappingTemplate
8 9 10 8 5 10 17 13 8 12 0.350485 100/100 NonOverlappingTemplate
14 9 11 11 4 7 12 11 14 7 0.401199 98/100 NonOverlappingTemplate
12 4 9 9 12 11 13 5 13 12 0.401199 100/100 NonOverlappingTemplate
6 10 7 9 14 8 20 10 7 9 0.075719 100/100 NonOverlappingTemplate
8 13 10 12 11 7 12 13 7 7 0.759756 100/100 NonOverlappingTemplate
12 10 14 5 12 12 10 11 8 6 0.595549 99/100 NonOverlappingTemplate
12 10 13 4 7 10 13 16 7 8 0.236810 100/100 NonOverlappingTemplate
14 18 11 6 9 11 7 8 3 13 0.048716 97/100 NonOverlappingTemplate
10 9 9 12 9 11 9 12 10 9 0.997823 98/100 NonOverlappingTemplate
12 12 11 15 7 10 12 5 9 7 0.514124 98/100 NonOverlappingTemplate
9 14 18 12 10 5 8 10 8 6 0.145326 100/100 NonOverlappingTemplate
16 12 8 10 11 11 8 12 6 6 0.474986 99/100 NonOverlappingTemplate
12 13 8 9 10 16 11 8 5 8 0.455937 100/100 NonOverlappingTemplate
6 12 13 7 7 12 8 9 12 14 0.574903 99/100 NonOverlappingTemplate
13 11 8 7 7 12 8 12 13 9 0.798139 97/100 NonOverlappingTemplate
13 14 5 6 11 11 10 9 10 11 0.637119 98/100 NonOverlappingTemplate
10 14 7 15 12 7 8 8 6 13 0.383827 97/100 NonOverlappingTemplate
7 11 11 15 5 7 6 15 13 10 0.213309 100/100 NonOverlappingTemplate
8 11 5 11 10 11 11 13 9 11 0.883171 98/100 NonOverlappingTemplate
9 7 14 11 13 6 3 16 12 9 0.115387 98/100 NonOverlappingTemplate
12 10 4 7 18 10 6 8 7 18 0.014550 98/100 NonOverlappingTemplate
14 6 7 18 13 12 9 8 4 9 0.066882 99/100 NonOverlappingTemplate
6 9 11 11 11 14 8 15 10 5 0.437274 100/100 NonOverlappingTemplate
9 10 15 8 7 8 14 11 9 9 0.719747 99/100 NonOverlappingTemplate
8 15 12 12 5 9 7 12 10 10 0.574903 99/100 NonOverlappingTemplate
11 7 14 7 9 13 7 14 10 8 0.595549 98/100 NonOverlappingTemplate
10 16 8 11 8 10 9 9 11 8 0.816537 99/100 NonOverlappingTemplate
12 7 12 9 10 6 10 9 11 14 0.816537 100/100 NonOverlappingTemplate
9 8 6 13 9 9 9 15 6 16 0.275709 100/100 NonOverlappingTemplate
11 11 8 10 12 4 8 17 7 12 0.262249 99/100 NonOverlappingTemplate
15 11 10 7 7 13 14 12 7 4 0.224821 99/100 NonOverlappingTemplate
13 10 6 7 11 12 10 7 12 12 0.779188 100/100 NonOverlappingTemplate
17 10 7 7 10 12 10 13 7 7 0.366918 99/100 NonOverlappingTemplate
18 9 7 7 10 8 13 13 8 7 0.224821 98/100 NonOverlappingTemplate
16 9 9 10 10 9 6 12 6 13 0.494392 97/100 NonOverlappingTemplate
8 5 10 11 12 14 13 8 12 7 0.574903 100/100 NonOverlappingTemplate
11 14 6 13 12 2 11 9 9 13 0.202268 99/100 NonOverlappingTemplate
12 12 6 10 9 17 9 12 5 8 0.289667 100/100 NonOverlappingTemplate
11 5 6 10 8 13 8 14 12 13 0.455937 100/100 NonOverlappingTemplate
9 9 10 8 11 9 14 10 14 6 0.779188 97/100 NonOverlappingTemplate
9 15 12 9 12 8 10 8 8 9 0.851383 98/100 NonOverlappingTemplate
9 11 12 14 9 13 9 2 11 10 0.366918 97/100 NonOverlappingTemplate
11 14 12 6 16 9 8 13 4 7 0.153763 98/100 NonOverlappingTemplate
9 10 12 6 10 16 12 12 4 9 0.334538 100/100 NonOverlappingTemplate
7 10 9 7 13 12 7 12 13 10 0.798139 100/100 NonOverlappingTemplate
13 7 10 10 14 10 10 6 10 10 0.834308 99/100 NonOverlappingTemplate
6 3 12 12 16 11 5 6 13 16 0.020548 96/100 NonOverlappingTemplate
8 10 10 4 12 12 13 12 8 11 0.678686 100/100 NonOverlappingTemplate
8 8 11 11 8 11 7 11 12 13 0.924076 98/100 NonOverlappingTemplate
7 8 11 15 15 13 5 6 8 12 0.202268 99/100 NonOverlappingTemplate
10 9 11 9 9 9 12 11 10 10 0.999438 99/100 NonOverlappingTemplate
9 14 12 13 9 10 10 6 9 8 0.816537 98/100 NonOverlappingTemplate
11 9 12 7 10 10 8 9 16 8 0.739918 99/100 NonOverlappingTemplate
6 9 13 7 13 11 7 10 15 9 0.534146 100/100 NonOverlappingTemplate
10 10 13 6 15 5 13 12 9 7 0.366918 99/100 NonOverlappingTemplate
10 14 6 6 11 10 12 15 12 4 0.224821 97/100 NonOverlappingTemplate
6 7 7 7 13 14 15 6 11 14 0.181557 100/100 NonOverlappingTemplate
11 10 9 11 8 7 11 13 7 13 0.883171 99/100 NonOverlappingTemplate
9 11 11 10 8 13 11 5 13 9 0.816537 100/100 NonOverlappingTemplate
8 10 12 11 7 12 14 6 8 12 0.719747 100/100 NonOverlappingTemplate
13 10 11 12 10 10 6 13 6 9 0.779188 99/100 NonOverlappingTemplate
8 5 11 6 10 13 12 12 13 10 0.616305 100/100 NonOverlappingTemplate
9 4 6 5 12 7 14 18 12 13 0.030806 100/100 NonOverlappingTemplate
11 9 14 6 6 9 9 11 10 15 0.554420 100/100 NonOverlappingTemplate
13 11 12 3 13 9 15 11 4 9 0.137282 100/100 NonOverlappingTemplate
7 6 9 14 10 16 9 12 10 7 0.419021 100/100 NonOverlappingTemplate
9 9 11 8 12 7 17 8 5 14 0.249284 99/100 NonOverlappingTemplate
6 14 11 6 9 8 14 9 10 13 0.534146 99/100 NonOverlappingTemplate
12 12 13 13 6 9 10 8 9 8 0.816537 97/100 NonOverlappingTemplate
13 14 11 14 7 5 10 12 6 8 0.350485 98/100 NonOverlappingTemplate
11 8 7 14 8 11 5 7 16 13 0.249284 100/100 NonOverlappingTemplate
16 9 10 11 6 10 9 13 8 8 0.616305 100/100 NonOverlappingTemplate
11 9 7 10 6 8 16 11 12 10 0.616305 100/100 NonOverlappingTemplate
6 8 6 12 9 14 14 13 10 8 0.474986 100/100 NonOverlappingTemplate
13 11 5 14 10 6 14 7 10 10 0.419021 98/100 NonOverlappingTemplate
10 8 10 9 7 8 13 11 15 9 0.798139 100/100 NonOverlappingTemplate
8 12 15 6 14 12 10 13 5 5 0.171867 100/100 NonOverlappingTemplate
8 8 12 10 11 7 13 12 8 11 0.911413 100/100 NonOverlappingTemplate
8 11 11 16 14 9 7 7 8 9 0.514124 100/100 NonOverlappingTemplate
10 11 12 7 14 9 12 12 8 5 0.657933 98/100 NonOverlappingTemplate
10 5 8 11 8 9 13 14 13 9 0.637119 99/100 NonOverlappingTemplate
11 11 8 11 13 10 14 6 8 8 0.779188 99/100 NonOverlappingTemplate
2 10 14 11 8 11 12 10 13 9 0.350485 100/100 NonOverlappingTemplate
13 8 16 9 8 15 11 5 4 11 0.115387 98/100 NonOverlappingTemplate
10 5 12 8 21 6 9 12 15 2 0.001757 99/100 NonOverlappingTemplate
13 13 15 5 9 11 9 9 7 9 0.514124 98/100 NonOverlappingTemplate
9 12 10 8 7 9 14 12 12 7 0.816537 100/100 NonOverlappingTemplate
7 12 10 7 8 12 9 10 13 12 0.883171 100/100 NonOverlappingTemplate
7 8 15 11 10 8 8 14 8 11 0.657933 99/100 NonOverlappingTemplate
12 9 10 6 14 9 8 11 13 8 0.779188 98/100 NonOverlappingTemplate
7 11 8 9 8 5 13 13 12 14 0.514124 98/100 NonOverlappingTemplate
12 7 14 10 6 13 9 11 10 8 0.739918 99/100 NonOverlappingTemplate
9 6 9 8 7 7 13 17 11 13 0.289667 98/100 NonOverlappingTemplate
3 11 10 13 13 11 8 12 13 6 0.334538 99/100 NonOverlappingTemplate
9 9 12 12 12 11 5 11 11 8 0.867692 100/100 NonOverlappingTemplate
16 10 5 11 8 10 14 6 11 9 0.350485 100/100 NonOverlappingTemplate
6 8 8 11 12 7 11 5 18 14 0.108791 99/100 NonOverlappingTemplate
7 18 5 9 10 19 9 13 6 4 0.003996 100/100 NonOverlappingTemplate
15 11 14 12 17 6 3 8 6 8 0.030806 99/100 NonOverlappingTemplate
13 11 11 12 10 10 6 12 5 10 0.739918 99/100 NonOverlappingTemplate
9 8 13 11 16 13 8 10 7 5 0.366918 100/100 NonOverlappingTemplate
12 10 13 8 10 12 8 7 6 14 0.678686 98/100 NonOverlappingTemplate
8 8 7 5 7 10 14 14 9 18 0.096578 98/100 NonOverlappingTemplate
8 8 11 9 14 8 8 12 14 8 0.759756 100/100 NonOverlappingTemplate
11 7 12 6 13 6 12 12 12 9 0.657933 98/100 NonOverlappingTemplate
7 8 7 8 17 15 6 5 11 16 0.037566 99/100 NonOverlappingTemplate
8 16 6 7 11 9 13 14 10 6 0.289667 100/100 NonOverlappingTemplate
10 13 15 11 7 8 9 9 8 10 0.798139 98/100 NonOverlappingTemplate
9 11 12 11 15 9 10 5 9 9 0.739918 99/100 NonOverlappingTemplate
17 10 5 8 7 8 10 18 8 9 0.066882 99/100 NonOverlappingTemplate
5 10 13 8 12 10 12 5 14 11 0.455937 100/100 NonOverlappingTemplate
9 15 8 11 15 10 8 10 6 8 0.534146 99/100 NonOverlappingTemplate
11 14 11 9 9 7 9 6 14 10 0.719747 100/100 NonOverlappingTemplate
12 9 7 7 11 10 15 9 9 11 0.816537 99/100 NonOverlappingTemplate
9 15 12 9 12 8 10 8 8 9 0.851383 98/100 NonOverlappingTemplate
15 14 9 10 7 11 11 5 9 9 0.534146 99/100 OverlappingTemplate
10 11 12 5 9 11 11 11 9 11 0.935716 99/100 Universal
12 10 10 10 8 9 12 3 11 15 0.455937 99/100 ApproximateEntropy
9 4 12 10 8 13 7 11 6 7 0.381687 84/87 RandomExcursions
8 10 5 13 8 8 8 7 12 8 0.650132 87/87 RandomExcursions
12 6 6 10 11 11 6 9 7 9 0.676097 86/87 RandomExcursions
5 10 12 12 10 5 8 9 7 9 0.572333 87/87 RandomExcursions
5 14 9 6 11 5 6 11 8 12 0.206354 87/87 RandomExcursions
10 12 9 3 7 5 14 12 11 4 0.054923 86/87 RandomExcursions
8 7 7 9 11 10 7 8 14 6 0.624107 87/87 RandomExcursions
11 7 5 4 11 13 8 7 15 6 0.081137 87/87 RandomExcursions
8 9 10 8 8 12 10 8 5 9 0.885045 87/87 RandomExcursionsVariant
8 8 12 7 10 10 5 9 10 8 0.845066 87/87 RandomExcursionsVariant
9 10 7 13 6 9 8 10 5 10 0.676097 87/87 RandomExcursionsVariant
10 10 11 9 12 11 6 5 8 5 0.521600 86/87 RandomExcursionsVariant
10 9 7 13 11 12 6 7 5 7 0.448892 86/87 RandomExcursionsVariant
8 9 9 14 12 10 11 4 5 5 0.180322 85/87 RandomExcursionsVariant
7 14 11 10 9 9 7 5 11 4 0.284375 84/87 RandomExcursionsVariant
11 7 7 11 7 10 8 8 4 14 0.381687 84/87 RandomExcursionsVariant
7 8 12 7 8 8 11 5 9 12 0.676097 86/87 RandomExcursionsVariant
6 11 10 14 6 8 5 12 7 8 0.320988 85/87 RandomExcursionsVariant
12 9 7 6 13 10 7 7 6 10 0.572333 87/87 RandomExcursionsVariant
11 8 5 10 11 8 6 9 10 9 0.823278 86/87 RandomExcursionsVariant
8 7 9 8 13 9 7 11 5 10 0.701879 87/87 RandomExcursionsVariant
12 3 11 15 8 11 6 7 8 6 0.101765 86/87 RandomExcursionsVariant
11 7 13 11 10 6 8 6 5 10 0.472584 85/87 RandomExcursionsVariant
14 11 9 4 12 9 7 6 4 11 0.136304 84/87 RandomExcursionsVariant
12 20 4 7 8 5 11 10 5 5 0.001334 86/87 RandomExcursionsVariant
11 18 10 7 7 4 8 9 6 7 0.046794 85/87 RandomExcursionsVariant
14 6 15 16 4 10 12 10 6 7 0.071177 99/100 Serial
11 14 11 8 7 11 6 12 10 10 0.816537 100/100 Serial
9 9 11 6 9 13 11 8 17 7 0.419021 97/100 LinearComplexity
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
The minimum pass rate for each statistical test with the exception of the
random excursion (variant) test is approximately = 96 for a
sample size = 100 binary sequences.
The minimum pass rate for the random excursion (variant) test
is approximately = 83 for a sample size = 87 binary sequences.
For further guidelines construct a probability table using the MAPLE program
provided in the addendum section of the documentation.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
------------------------------------------------------------------------------
RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF PASSING SEQUENCES
------------------------------------------------------------------------------
generator is <../128N_2142215326.bin>
------------------------------------------------------------------------------
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPORTION STATISTICAL TEST
------------------------------------------------------------------------------
11 10 12 8 11 10 14 9 6 9 0.883171 100/100 Frequency
10 8 8 14 11 8 11 9 11 10 0.955835 97/100 BlockFrequency
10 12 10 10 10 10 12 11 9 6 0.978072 100/100 CumulativeSums
11 11 8 11 10 9 12 9 7 12 0.978072 99/100 CumulativeSums
8 8 6 5 16 10 17 14 7 9 0.066882 99/100 Runs
16 7 11 7 12 6 9 11 9 12 0.514124 99/100 LongestRun
9 13 5 10 6 9 9 17 12 10 0.304126 99/100 Rank
11 9 14 10 7 12 9 7 12 9 0.867692 100/100 FFT
17 11 0 8 10 12 8 11 10 13 0.045675 99/100 NonOverlappingTemplate
9 9 7 16 11 12 8 9 9 10 0.759756 100/100 NonOverlappingTemplate
13 5 11 9 12 10 8 10 12 10 0.851383 100/100 NonOverlappingTemplate
3 9 12 10 13 9 6 10 15 13 0.249284 100/100 NonOverlappingTemplate
11 8 9 12 14 9 11 10 5 11 0.798139 99/100 NonOverlappingTemplate
7 8 11 14 10 6 12 12 13 7 0.616305 100/100 NonOverlappingTemplate
8 12 11 11 15 10 14 6 7 6 0.419021 100/100 NonOverlappingTemplate
5 13 12 10 13 10 6 7 7 17 0.162606 100/100 NonOverlappingTemplate
10 12 11 7 7 14 8 6 12 13 0.616305 100/100 NonOverlappingTemplate
12 12 8 11 5 9 8 12 15 8 0.574903 99/100 NonOverlappingTemplate
10 8 11 14 9 3 8 11 13 13 0.401199 100/100 NonOverlappingTemplate
9 11 10 11 9 11 7 8 11 13 0.971699 100/100 NonOverlappingTemplate
9 12 10 13 7 10 9 7 14 9 0.834308 100/100 NonOverlappingTemplate
13 11 7 14 3 10 11 17 8 6 0.080519 97/100 NonOverlappingTemplate
9 11 16 7 10 7 14 6 13 7 0.304126 100/100 NonOverlappingTemplate
10 7 8 9 7 10 12 12 12 13 0.883171 100/100 NonOverlappingTemplate
10 12 10 11 6 9 10 10 11 11 0.983453 100/100 NonOverlappingTemplate
16 5 14 7 11 8 13 8 8 10 0.289667 98/100 NonOverlappingTemplate
10 6 9 13 13 10 6 13 9 11 0.719747 99/100 NonOverlappingTemplate
9 13 6 13 7 9 19 8 10 6 0.102526 99/100 NonOverlappingTemplate
13 11 9 8 13 8 8 11 11 8 0.924076 97/100 NonOverlappingTemplate
14 7 12 9 11 5 12 12 7 11 0.595549 96/100 NonOverlappingTemplate
12 16 9 6 9 8 11 12 8 9 0.616305 99/100 NonOverlappingTemplate
12 10 6 12 12 8 14 12 7 7 0.637119 99/100 NonOverlappingTemplate
10 6 9 12 6 8 13 10 13 13 0.657933 99/100 NonOverlappingTemplate
11 7 10 11 9 9 12 8 10 13 0.964295 98/100 NonOverlappingTemplate
9 13 10 11 13 7 14 6 10 7 0.637119 99/100 NonOverlappingTemplate
8 14 8 10 13 9 11 12 8 7 0.816537 99/100 NonOverlappingTemplate
9 12 10 7 15 12 8 8 9 10 0.816537 98/100 NonOverlappingTemplate
11 10 7 3 14 8 10 14 11 12 0.350485 99/100 NonOverlappingTemplate
13 9 12 9 9 12 9 13 4 10 0.678686 99/100 NonOverlappingTemplate
8 15 10 10 12 9 12 7 8 9 0.816537 98/100 NonOverlappingTemplate
9 14 10 10 10 9 10 8 10 10 0.987896 99/100 NonOverlappingTemplate
7 12 11 11 9 9 10 12 11 8 0.978072 100/100 NonOverlappingTemplate
10 12 9 11 7 10 10 11 6 14 0.851383 98/100 NonOverlappingTemplate
6 8 10 11 12 14 10 12 8 9 0.834308 100/100 NonOverlappingTemplate
4 14 13 9 6 10 14 12 7 11 0.289667 100/100 NonOverlappingTemplate
10 7 8 15 10 11 11 11 11 6 0.759756 99/100 NonOverlappingTemplate
11 9 11 8 14 9 9 7 7 15 0.657933 98/100 NonOverlappingTemplate
8 11 10 8 14 9 11 12 9 8 0.935716 100/100 NonOverlappingTemplate
9 15 10 8 11 16 9 6 8 8 0.419021 99/100 NonOverlappingTemplate
15 10 10 11 7 12 2 8 16 9 0.108791 99/100 NonOverlappingTemplate
8 11 10 9 11 12 8 15 10 6 0.779188 99/100 NonOverlappingTemplate
18 12 12 4 9 10 7 10 7 11 0.171867 100/100 NonOverlappingTemplate
16 5 11 13 15 7 6 8 10 9 0.181557 98/100 NonOverlappingTemplate
10 9 8 11 12 18 8 9 5 10 0.319084 100/100 NonOverlappingTemplate
8 6 10 5 14 10 9 14 11 13 0.455937 99/100 NonOverlappingTemplate
13 7 16 9 6 13 12 9 11 4 0.202268 96/100 NonOverlappingTemplate
10 8 10 7 6 15 10 12 11 11 0.739918 100/100 NonOverlappingTemplate
9 9 14 8 14 4 8 12 11 11 0.494392 97/100 NonOverlappingTemplate
8 7 9 9 12 8 11 12 12 12 0.935716 100/100 NonOverlappingTemplate
14 13 13 11 7 5 15 7 9 6 0.213309 100/100 NonOverlappingTemplate
9 13 10 12 13 7 7 7 13 9 0.739918 100/100 NonOverlappingTemplate
11 8 11 9 8 9 12 10 13 9 0.978072 100/100 NonOverlappingTemplate
13 13 8 13 10 11 11 7 11 3 0.419021 97/100 NonOverlappingTemplate
8 8 16 3 13 11 10 11 10 10 0.319084 100/100 NonOverlappingTemplate
10 17 12 9 9 7 11 5 6 14 0.202268 99/100 NonOverlappingTemplate
15 11 10 14 10 9 2 12 10 7 0.213309 99/100 NonOverlappingTemplate
8 12 9 12 5 9 15 13 11 6 0.437274 100/100 NonOverlappingTemplate
11 11 6 13 14 7 6 9 13 10 0.554420 99/100 NonOverlappingTemplate
4 9 16 14 10 7 14 9 11 6 0.153763 100/100 NonOverlappingTemplate
8 11 11 12 6 9 8 16 9 10 0.657933 100/100 NonOverlappingTemplate
10 7 9 13 6 10 9 15 10 11 0.719747 99/100 NonOverlappingTemplate
8 12 9 13 7 8 10 11 10 12 0.935716 99/100 NonOverlappingTemplate
13 10 7 6 16 6 10 12 13 7 0.289667 99/100 NonOverlappingTemplate
13 11 4 11 11 11 12 8 8 11 0.719747 98/100 NonOverlappingTemplate
11 14 11 12 7 9 6 13 7 10 0.678686 100/100 NonOverlappingTemplate
13 13 9 10 6 10 12 6 12 9 0.739918 99/100 NonOverlappingTemplate
9 7 16 8 14 6 7 7 14 12 0.213309 100/100 NonOverlappingTemplate
8 14 15 9 8 13 12 5 7 9 0.366918 99/100 NonOverlappingTemplate
15 8 6 9 16 8 5 14 8 11 0.153763 99/100 NonOverlappingTemplate
13 9 11 6 9 12 13 7 10 10 0.834308 99/100 NonOverlappingTemplate
9 8 7 10 7 8 14 10 9 18 0.289667 100/100 NonOverlappingTemplate
15 12 7 8 7 5 12 10 12 12 0.455937 100/100 NonOverlappingTemplate
17 11 0 8 10 12 8 11 10 13 0.045675 99/100 NonOverlappingTemplate
10 8 8 7 12 7 15 11 12 10 0.739918 100/100 NonOverlappingTemplate
12 6 9 6 6 11 11 14 9 16 0.289667 99/100 NonOverlappingTemplate
8 16 7 10 12 12 7 7 8 13 0.455937 99/100 NonOverlappingTemplate
11 5 12 7 17 5 8 13 6 16 0.037566 100/100 NonOverlappingTemplate
9 7 6 14 11 12 11 9 11 10 0.834308 98/100 NonOverlappingTemplate
11 7 8 19 9 9 10 6 12 9 0.224821 98/100 NonOverlappingTemplate
8 16 9 4 9 10 14 13 6 11 0.213309 98/100 NonOverlappingTemplate
4 8 3 14 11 9 14 11 16 10 0.066882 100/100 NonOverlappingTemplate
13 9 12 8 6 13 11 10 7 11 0.798139 99/100 NonOverlappingTemplate
14 11 8 6 9 9 14 10 7 12 0.657933 97/100 NonOverlappingTemplate
10 13 15 13 8 7 7 11 8 8 0.595549 100/100 NonOverlappingTemplate
13 6 9 14 11 6 10 9 12 10 0.699313 100/100 NonOverlappingTemplate
10 13 6 8 10 11 15 9 8 10 0.739918 100/100 NonOverlappingTemplate
13 7 19 8 7 13 5 6 10 12 0.055361 98/100 NonOverlappingTemplate
11 15 8 11 7 12 9 10 10 7 0.798139 99/100 NonOverlappingTemplate
13 12 8 8 11 9 7 11 8 13 0.867692 100/100 NonOverlappingTemplate
13 12 8 9 11 8 9 7 9 14 0.834308 98/100 NonOverlappingTemplate
4 16 10 8 10 10 15 7 8 12 0.224821 99/100 NonOverlappingTemplate
11 16 9 7 10 13 7 9 10 8 0.637119 99/100 NonOverlappingTemplate
6 14 10 13 5 11 12 9 11 9 0.595549 100/100 NonOverlappingTemplate
9 11 10 12 15 10 6 10 8 9 0.816537 99/100 NonOverlappingTemplate
10 4 10 10 11 6 13 10 11 15 0.455937 100/100 NonOverlappingTemplate
11 5 11 7 4 16 6 16 14 10 0.040108 100/100 NonOverlappingTemplate
11 11 10 15 10 6 9 12 8 8 0.779188 99/100 NonOverlappingTemplate
11 10 5 9 14 10 10 9 12 10 0.851383 100/100 NonOverlappingTemplate
6 12 15 10 12 7 9 6 10 13 0.494392 100/100 NonOverlappingTemplate
6 8 11 9 14 11 14 9 6 12 0.574903 99/100 NonOverlappingTemplate
9 12 6 7 16 19 7 5 12 7 0.021999 99/100 NonOverlappingTemplate
7 8 14 11 7 11 12 12 12 6 0.657933 100/100 NonOverlappingTemplate
12 9 8 15 7 11 9 12 10 7 0.759756 99/100 NonOverlappingTemplate
11 13 9 11 10 12 12 12 2 8 0.419021 100/100 NonOverlappingTemplate
9 6 12 15 12 8 9 10 12 7 0.657933 100/100 NonOverlappingTemplate
10 11 7 12 14 12 12 7 8 7 0.739918 99/100 NonOverlappingTemplate
8 8 17 6 12 10 11 10 7 11 0.455937 99/100 NonOverlappingTemplate
8 14 10 9 9 7 16 9 8 10 0.616305 99/100 NonOverlappingTemplate
14 10 4 7 9 15 10 10 14 7 0.262249 98/100 NonOverlappingTemplate
6 13 18 9 11 14 8 6 6 9 0.108791 100/100 NonOverlappingTemplate
11 10 13 14 12 3 11 7 11 8 0.401199 99/100 NonOverlappingTemplate
16 8 5 6 9 6 10 15 13 12 0.137282 98/100 NonOverlappingTemplate
13 10 7 15 12 9 8 9 5 12 0.514124 98/100 NonOverlappingTemplate
12 11 4 11 9 17 8 10 8 10 0.350485 99/100 NonOverlappingTemplate
9 11 9 12 9 11 8 7 13 11 0.955835 100/100 NonOverlappingTemplate
6 13 9 11 10 7 8 16 12 8 0.494392 97/100 NonOverlappingTemplate
17 10 9 10 10 7 11 8 9 9 0.678686 96/100 NonOverlappingTemplate
9 7 9 8 11 7 16 15 7 11 0.383827 100/100 NonOverlappingTemplate
10 12 11 8 16 8 6 11 8 10 0.637119 99/100 NonOverlappingTemplate
4 13 8 15 10 12 9 12 12 5 0.262249 100/100 NonOverlappingTemplate
4 13 10 9 9 13 8 9 14 11 0.554420 100/100 NonOverlappingTemplate
15 11 8 10 5 14 5 15 12 5 0.090936 99/100 NonOverlappingTemplate
10 11 8 4 10 10 17 6 11 13 0.236810 99/100 NonOverlappingTemplate
10 11 9 8 10 14 14 7 4 13 0.419021 100/100 NonOverlappingTemplate
14 8 15 9 8 7 9 8 9 13 0.595549 97/100 NonOverlappingTemplate
7 6 8 13 7 12 13 13 10 11 0.637119 100/100 NonOverlappingTemplate
7 9 12 14 11 5 10 7 11 14 0.514124 97/100 NonOverlappingTemplate
8 6 10 9 11 12 12 8 15 9 0.739918 98/100 NonOverlappingTemplate
10 7 10 5 16 10 11 7 8 16 0.213309 99/100 NonOverlappingTemplate
14 11 10 8 12 9 10 10 9 7 0.935716 99/100 NonOverlappingTemplate
9 13 15 12 10 7 10 7 7 10 0.678686 100/100 NonOverlappingTemplate
12 12 7 10 10 10 12 11 9 7 0.955835 98/100 NonOverlappingTemplate
9 8 15 15 7 5 14 9 13 5 0.122325 99/100 NonOverlappingTemplate
10 8 11 6 14 11 6 12 13 9 0.657933 100/100 NonOverlappingTemplate
8 9 10 16 7 11 11 9 8 11 0.759756 100/100 NonOverlappingTemplate
9 12 7 6 11 10 13 12 10 10 0.883171 99/100 NonOverlappingTemplate
11 8 10 15 3 8 7 12 10 16 0.153763 99/100 NonOverlappingTemplate
9 7 13 11 9 17 3 11 9 11 0.202268 98/100 NonOverlappingTemplate
8 12 9 9 8 12 12 6 12 12 0.867692 99/100 NonOverlappingTemplate
11 16 11 7 12 5 11 8 9 10 0.514124 97/100 NonOverlappingTemplate
12 6 8 15 15 9 10 8 12 5 0.289667 99/100 NonOverlappingTemplate
7 14 14 10 7 11 9 7 10 11 0.719747 98/100 NonOverlappingTemplate
7 8 10 15 6 12 15 12 9 6 0.319084 99/100 NonOverlappingTemplate
11 12 9 11 17 11 10 3 10 6 0.202268 100/100 NonOverlappingTemplate
16 6 7 14 8 9 12 14 7 7 0.213309 99/100 NonOverlappingTemplate
15 12 7 8 7 5 12 10 12 12 0.455937 100/100 NonOverlappingTemplate
19 14 9 12 7 11 9 5 5 9 0.058984 99/100 OverlappingTemplate
12 11 6 10 6 15 10 10 9 11 0.699313 97/100 Universal
7 13 11 12 12 9 5 11 9 11 0.779188 97/100 ApproximateEntropy
8 13 9 10 11 9 6 4 8 9 0.572333 87/87 RandomExcursions
8 10 9 13 5 11 7 9 10 5 0.546791 86/87 RandomExcursions
8 6 8 6 7 7 14 12 13 6 0.250878 87/87 RandomExcursions
11 7 10 8 8 7 9 6 12 9 0.865697 87/87 RandomExcursions
13 7 5 10 7 7 10 10 10 8 0.676097 86/87 RandomExcursions
9 11 11 11 8 9 8 8 5 7 0.845066 84/87 RandomExcursions
6 7 13 13 6 9 10 11 5 7 0.320988 86/87 RandomExcursions
10 8 10 6 5 9 12 9 15 3 0.117948 85/87 RandomExcursions
9 4 6 12 4 12 6 7 12 15 0.043157 85/87 RandomExcursionsVariant
9 6 8 6 8 4 12 10 7 17 0.069538 85/87 RandomExcursionsVariant
7 8 9 8 4 6 12 14 12 7 0.250878 85/87 RandomExcursionsVariant
9 6 7 9 5 12 8 15 8 8 0.340461 85/87 RandomExcursionsVariant
11 4 7 6 11 9 16 11 7 5 0.081137 86/87 RandomExcursionsVariant
11 6 4 10 10 15 11 6 6 8 0.168344 86/87 RandomExcursionsVariant
9 9 2 12 11 11 5 10 12 6 0.157031 87/87 RandomExcursionsVariant
8 13 7 3 7 13 8 12 7 9 0.220448 87/87 RandomExcursionsVariant
11 5 11 6 11 9 7 5 10 12 0.448892 86/87 RandomExcursionsVariant
11 8 7 13 6 15 4 9 8 6 0.136304 85/87 RandomExcursionsVariant
5 15 10 11 11 6 6 7 9 7 0.250878 87/87 RandomExcursionsVariant
7 11 8 12 3 12 11 6 8 9 0.340461 87/87 RandomExcursionsVariant
6 11 9 7 10 6 8 12 12 6 0.598138 87/87 RandomExcursionsVariant
6 11 10 12 7 6 9 8 15 3 0.117948 87/87 RandomExcursionsVariant
7 11 8 11 8 11 9 7 6 9 0.885045 86/87 RandomExcursionsVariant
8 9 11 10 10 9 10 6 4 10 0.752361 86/87 RandomExcursionsVariant
7 11 14 6 5 10 9 8 11 6 0.381687 86/87 RandomExcursionsVariant
7 14 11 5 6 5 11 8 10 10 0.302291 87/87 RandomExcursionsVariant
8 8 12 9 7 9 10 16 11 10 0.739918 98/100 Serial
7 10 9 7 9 12 14 4 10 18 0.122325 100/100 Serial
8 13 9 9 11 8 9 11 15 7 0.779188 100/100 LinearComplexity
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
The minimum pass rate for each statistical test with the exception of the
random excursion (variant) test is approximately = 96 for a
sample size = 100 binary sequences.
The minimum pass rate for the random excursion (variant) test
is approximately = 83 for a sample size = 87 binary sequences.
For further guidelines construct a probability table using the MAPLE program
provided in the addendum section of the documentation.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
NIST sts-2.1.2 Breeze256
100 samples with 8,000.000 bits (10**6 bytes)
------------------------------------------------------------------------------
RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF PASSING SEQUENCES
------------------------------------------------------------------------------
generator is <../256N_292422974.bin>
------------------------------------------------------------------------------
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPORTION STATISTICAL TEST
------------------------------------------------------------------------------
7 11 10 8 10 7 9 10 12 16 0.699313 99/100 Frequency
11 13 6 10 10 13 13 9 7 8 0.759756 99/100 BlockFrequency
10 7 8 8 11 10 9 9 16 12 0.739918 98/100 CumulativeSums
9 8 10 9 8 10 8 15 10 13 0.851383 99/100 CumulativeSums
9 7 11 11 10 12 12 10 9 9 0.987896 100/100 Runs
7 12 18 5 12 7 7 11 10 11 0.181557 100/100 LongestRun
6 10 11 13 8 14 12 12 6 8 0.595549 98/100 Rank
11 6 13 11 10 8 18 7 10 6 0.213309 99/100 FFT
10 10 6 9 15 10 8 14 7 11 0.616305 99/100 NonOverlappingTemplate
16 11 9 10 14 5 12 7 7 9 0.334538 98/100 NonOverlappingTemplate
9 7 8 12 3 17 10 16 7 11 0.062821 98/100 NonOverlappingTemplate
11 6 10 9 6 16 8 12 10 12 0.514124 99/100 NonOverlappingTemplate
11 13 8 6 14 7 10 12 9 10 0.739918 99/100 NonOverlappingTemplate
12 8 6 9 9 10 18 13 7 8 0.262249 98/100 NonOverlappingTemplate
4 13 11 8 16 10 12 6 13 7 0.191687 100/100 NonOverlappingTemplate
10 7 16 12 11 13 6 7 6 12 0.319084 97/100 NonOverlappingTemplate
9 7 8 11 6 11 16 14 7 11 0.401199 100/100 NonOverlappingTemplate
6 11 5 14 11 9 12 15 9 8 0.401199 99/100 NonOverlappingTemplate
16 5 8 12 8 8 11 9 9 14 0.383827 99/100 NonOverlappingTemplate
14 10 13 5 15 9 6 9 10 9 0.401199 98/100 NonOverlappingTemplate
7 10 10 13 10 11 11 13 4 11 0.678686 100/100 NonOverlappingTemplate
9 9 8 10 15 11 5 9 10 14 0.595549 100/100 NonOverlappingTemplate
8 11 13 15 9 10 8 9 9 8 0.834308 98/100 NonOverlappingTemplate
10 8 9 16 9 6 9 13 9 11 0.637119 97/100 NonOverlappingTemplate
11 11 8 13 8 11 13 7 10 8 0.897763 100/100 NonOverlappingTemplate
5 10 5 13 8 15 13 13 10 8 0.275709 99/100 NonOverlappingTemplate
8 7 13 13 12 10 10 14 8 5 0.534146 99/100 NonOverlappingTemplate
11 11 12 9 9 10 5 13 11 9 0.883171 99/100 NonOverlappingTemplate
11 12 9 12 7 9 16 6 9 9 0.595549 100/100 NonOverlappingTemplate
8 8 9 14 10 4 15 14 9 9 0.319084 98/100 NonOverlappingTemplate
9 11 9 14 10 12 8 9 9 9 0.964295 99/100 NonOverlappingTemplate
7 11 9 11 10 12 11 6 11 12 0.924076 100/100 NonOverlappingTemplate
11 11 5 10 14 12 8 12 10 7 0.699313 99/100 NonOverlappingTemplate
12 7 11 7 9 11 8 12 8 15 0.719747 99/100 NonOverlappingTemplate
11 11 13 10 12 9 8 8 6 12 0.883171 98/100 NonOverlappingTemplate
7 7 14 13 14 9 5 14 8 9 0.304126 100/100 NonOverlappingTemplate
11 10 11 8 12 7 8 8 14 11 0.883171 100/100 NonOverlappingTemplate
11 13 6 11 9 10 9 12 12 7 0.867692 99/100 NonOverlappingTemplate
13 9 8 13 5 11 13 12 5 11 0.455937 100/100 NonOverlappingTemplate
11 6 9 8 7 10 12 8 16 13 0.494392 99/100 NonOverlappingTemplate
12 8 7 5 8 8 13 12 13 14 0.455937 99/100 NonOverlappingTemplate
9 10 11 11 12 14 8 5 10 10 0.816537 98/100 NonOverlappingTemplate
8 15 12 11 7 9 7 10 9 12 0.759756 99/100 NonOverlappingTemplate
9 10 8 9 9 10 10 15 9 11 0.946308 99/100 NonOverlappingTemplate
9 10 14 11 9 5 13 7 12 10 0.678686 100/100 NonOverlappingTemplate
6 11 19 11 12 2 14 4 11 10 0.008879 100/100 NonOverlappingTemplate
14 8 16 9 6 8 15 11 6 7 0.171867 99/100 NonOverlappingTemplate
8 10 12 7 8 14 7 10 11 13 0.779188 99/100 NonOverlappingTemplate
8 8 14 10 9 11 9 7 11 13 0.867692 98/100 NonOverlappingTemplate
14 6 8 6 7 11 13 15 10 10 0.383827 99/100 NonOverlappingTemplate
15 11 4 10 4 12 12 12 11 9 0.262249 97/100 NonOverlappingTemplate
11 12 11 9 8 11 10 7 11 10 0.987896 99/100 NonOverlappingTemplate
5 8 14 8 12 13 12 12 8 8 0.554420 98/100 NonOverlappingTemplate
12 11 11 8 13 7 13 8 10 7 0.834308 99/100 NonOverlappingTemplate
10 8 7 8 14 7 13 17 6 10 0.236810 100/100 NonOverlappingTemplate
12 4 11 8 14 12 6 13 11 9 0.419021 96/100 NonOverlappingTemplate
7 8 6 12 11 11 10 7 17 11 0.401199 100/100 NonOverlappingTemplate
5 18 9 13 16 7 5 6 12 9 0.025193 100/100 NonOverlappingTemplate
13 13 6 9 9 13 11 10 2 14 0.181557 99/100 NonOverlappingTemplate
6 15 9 11 13 8 12 7 12 7 0.514124 100/100 NonOverlappingTemplate
8 15 9 9 12 5 14 10 8 10 0.534146 98/100 NonOverlappingTemplate
8 20 8 11 10 6 11 6 11 9 0.108791 100/100 NonOverlappingTemplate
7 17 7 9 5 10 13 11 11 10 0.319084 98/100 NonOverlappingTemplate
10 13 5 7 11 14 14 8 11 7 0.437274 99/100 NonOverlappingTemplate
9 14 16 12 7 6 13 5 2 16 0.010237 100/100 NonOverlappingTemplate
12 9 9 9 7 10 11 13 8 12 0.946308 100/100 NonOverlappingTemplate
17 12 9 7 7 13 10 7 11 7 0.350485 97/100 NonOverlappingTemplate
9 6 11 7 11 8 12 9 16 11 0.595549 100/100 NonOverlappingTemplate
10 4 11 13 7 12 14 5 11 13 0.275709 99/100 NonOverlappingTemplate
11 10 6 14 9 12 8 14 6 10 0.595549 99/100 NonOverlappingTemplate
10 14 12 9 19 11 9 6 6 4 0.045675 100/100 NonOverlappingTemplate
11 7 12 7 9 8 10 14 12 10 0.851383 99/100 NonOverlappingTemplate
8 11 11 8 18 4 5 12 13 10 0.096578 98/100 NonOverlappingTemplate
8 9 14 6 12 5 13 13 10 10 0.494392 99/100 NonOverlappingTemplate
19 4 11 7 8 11 12 12 9 7 0.090936 99/100 NonOverlappingTemplate
13 6 8 5 6 15 11 17 8 11 0.090936 99/100 NonOverlappingTemplate
11 7 11 7 12 10 11 11 9 11 0.971699 98/100 NonOverlappingTemplate
5 12 12 12 10 9 12 7 10 11 0.816537 100/100 NonOverlappingTemplate
12 9 6 14 13 12 7 7 8 12 0.574903 100/100 NonOverlappingTemplate
10 7 16 11 7 6 13 10 14 6 0.262249 99/100 NonOverlappingTemplate
10 17 10 8 8 7 9 12 10 9 0.616305 99/100 NonOverlappingTemplate
5 13 6 13 13 16 8 8 10 8 0.236810 100/100 NonOverlappingTemplate
10 10 6 9 15 10 8 14 7 11 0.616305 99/100 NonOverlappingTemplate
12 9 13 10 8 7 5 14 9 13 0.554420 100/100 NonOverlappingTemplate
3 11 6 10 9 6 19 10 12 14 0.030806 99/100 NonOverlappingTemplate
10 6 7 8 13 16 7 10 11 12 0.455937 99/100 NonOverlappingTemplate
8 11 9 15 8 4 6 9 16 14 0.122325 98/100 NonOverlappingTemplate
5 12 5 13 6 16 8 14 13 8 0.096578 100/100 NonOverlappingTemplate
9 12 7 5 9 12 11 16 12 7 0.401199 100/100 NonOverlappingTemplate
10 9 13 8 8 12 5 9 10 16 0.494392 98/100 NonOverlappingTemplate
10 7 10 8 16 13 5 14 10 7 0.289667 98/100 NonOverlappingTemplate
10 12 7 8 2 18 10 8 15 10 0.042808 99/100 NonOverlappingTemplate
5 13 11 9 6 11 14 13 5 13 0.262249 100/100 NonOverlappingTemplate
8 10 6 9 13 9 12 11 9 13 0.867692 100/100 NonOverlappingTemplate
8 11 7 14 10 7 8 11 10 14 0.739918 99/100 NonOverlappingTemplate
11 9 8 12 14 5 16 8 6 11 0.289667 98/100 NonOverlappingTemplate
14 11 9 10 10 7 8 10 11 10 0.955835 99/100 NonOverlappingTemplate
6 15 7 9 10 7 8 11 13 14 0.437274 100/100 NonOverlappingTemplate
10 9 11 14 6 9 13 7 12 9 0.759756 100/100 NonOverlappingTemplate
10 7 14 7 12 16 9 7 8 10 0.455937 98/100 NonOverlappingTemplate
9 11 10 11 5 7 11 11 13 12 0.816537 97/100 NonOverlappingTemplate
8 14 11 13 7 11 9 4 10 13 0.474986 100/100 NonOverlappingTemplate
4 6 10 13 13 10 9 14 7 14 0.262249 100/100 NonOverlappingTemplate
10 8 7 11 11 15 6 11 13 8 0.637119 98/100 NonOverlappingTemplate
11 14 6 9 15 6 11 10 10 8 0.534146 98/100 NonOverlappingTemplate
12 10 11 6 11 14 6 7 9 14 0.534146 99/100 NonOverlappingTemplate
11 10 13 14 9 10 8 13 7 5 0.595549 98/100 NonOverlappingTemplate
17 5 10 6 12 8 8 10 8 16 0.115387 98/100 NonOverlappingTemplate
15 5 13 8 8 10 15 6 8 12 0.236810 98/100 NonOverlappingTemplate
7 5 16 11 12 12 14 6 10 7 0.213309 99/100 NonOverlappingTemplate
10 10 12 8 12 11 5 9 8 15 0.657933 99/100 NonOverlappingTemplate
6 10 12 14 10 7 9 13 11 8 0.739918 100/100 NonOverlappingTemplate
12 4 12 14 10 11 10 8 8 11 0.637119 97/100 NonOverlappingTemplate
14 4 7 10 7 12 10 14 10 12 0.401199 100/100 NonOverlappingTemplate
10 13 13 10 9 9 10 11 7 8 0.946308 98/100 NonOverlappingTemplate
12 13 11 16 8 7 9 6 5 13 0.249284 97/100 NonOverlappingTemplate
10 10 10 9 11 8 7 14 10 11 0.955835 97/100 NonOverlappingTemplate
13 9 7 12 16 11 12 6 4 10 0.236810 98/100 NonOverlappingTemplate
8 8 11 9 7 12 6 16 10 13 0.494392 98/100 NonOverlappingTemplate
11 4 7 8 12 7 13 9 15 14 0.249284 100/100 NonOverlappingTemplate
10 14 11 15 7 12 8 8 5 10 0.455937 100/100 NonOverlappingTemplate
12 10 8 7 5 9 12 11 15 11 0.595549 98/100 NonOverlappingTemplate
7 12 10 4 9 12 17 11 9 9 0.304126 100/100 NonOverlappingTemplate
11 14 11 12 5 10 10 7 12 8 0.699313 98/100 NonOverlappingTemplate
11 11 12 9 9 6 11 10 9 12 0.964295 100/100 NonOverlappingTemplate
6 9 3 14 10 16 12 15 8 7 0.066882 100/100 NonOverlappingTemplate
9 17 7 8 10 9 7 12 9 12 0.514124 99/100 NonOverlappingTemplate
6 13 14 16 12 4 10 8 6 11 0.129620 100/100 NonOverlappingTemplate
10 11 10 10 13 11 8 7 12 8 0.955835 100/100 NonOverlappingTemplate
13 9 13 12 12 8 10 3 8 12 0.455937 98/100 NonOverlappingTemplate
10 7 13 11 10 8 8 8 14 11 0.851383 98/100 NonOverlappingTemplate
14 8 10 4 6 9 13 10 15 11 0.289667 99/100 NonOverlappingTemplate
9 7 12 14 11 14 7 9 7 10 0.678686 99/100 NonOverlappingTemplate
15 10 8 12 12 10 9 8 9 7 0.816537 99/100 NonOverlappingTemplate
9 11 17 8 11 9 8 11 5 11 0.455937 98/100 NonOverlappingTemplate
3 12 18 5 17 9 13 4 12 7 0.002971 100/100 NonOverlappingTemplate
12 12 11 11 8 4 4 13 6 19 0.023545 100/100 NonOverlappingTemplate
10 10 11 12 14 5 6 10 13 9 0.616305 100/100 NonOverlappingTemplate
9 12 10 11 8 8 14 8 12 8 0.897763 99/100 NonOverlappingTemplate
15 9 9 4 10 7 11 15 8 12 0.304126 98/100 NonOverlappingTemplate
9 3 11 18 10 12 8 12 10 7 0.137282 99/100 NonOverlappingTemplate
15 5 9 11 7 11 12 11 10 9 0.657933 100/100 NonOverlappingTemplate
14 7 7 6 8 11 14 9 15 9 0.366918 99/100 NonOverlappingTemplate
5 8 5 15 11 8 11 6 15 16 0.062821 100/100 NonOverlappingTemplate
10 13 5 13 10 9 5 18 7 10 0.115387 99/100 NonOverlappingTemplate
12 11 8 10 9 12 9 6 4 19 0.096578 99/100 NonOverlappingTemplate
12 14 8 11 7 12 5 9 12 10 0.657933 99/100 NonOverlappingTemplate
9 15 15 4 6 6 8 16 12 9 0.058984 99/100 NonOverlappingTemplate
12 11 14 8 7 10 10 8 9 11 0.911413 98/100 NonOverlappingTemplate
9 8 9 11 13 12 4 16 13 5 0.181557 98/100 NonOverlappingTemplate
4 13 11 9 8 7 8 17 11 12 0.224821 100/100 NonOverlappingTemplate
8 12 11 9 13 12 14 10 6 5 0.534146 99/100 NonOverlappingTemplate
11 12 10 11 8 9 18 7 9 5 0.275709 100/100 NonOverlappingTemplate
15 9 5 7 10 13 6 12 16 7 0.145326 99/100 NonOverlappingTemplate
5 9 9 9 15 9 15 11 11 7 0.437274 99/100 NonOverlappingTemplate
5 13 6 13 12 17 8 8 10 8 0.191687 100/100 NonOverlappingTemplate
12 7 16 17 4 15 5 5 9 10 0.012650 99/100 OverlappingTemplate
11 12 9 11 6 8 11 12 10 10 0.955835 98/100 Universal
9 8 13 11 10 11 7 10 9 12 0.964295 98/100 ApproximateEntropy
12 12 5 13 9 8 8 10 8 4 0.284375 87/89 RandomExcursions
13 7 10 13 12 6 6 10 8 4 0.192984 88/89 RandomExcursions
14 15 12 6 7 6 8 5 6 10 0.069538 86/89 RandomExcursions
14 8 9 7 12 5 11 10 7 6 0.340461 87/89 RandomExcursions
6 6 9 8 14 12 15 6 4 9 0.059452 89/89 RandomExcursions
9 8 7 4 13 12 5 11 10 10 0.302291 86/89 RandomExcursions
15 8 8 8 13 8 12 8 6 3 0.094427 88/89 RandomExcursions
9 10 16 4 11 12 4 7 6 10 0.050710 88/89 RandomExcursions
9 8 11 13 5 8 8 6 11 10 0.572333 87/89 RandomExcursionsVariant
11 6 10 12 8 8 9 11 9 5 0.676097 87/89 RandomExcursionsVariant
9 13 5 13 10 9 9 5 7 9 0.381687 88/89 RandomExcursionsVariant
13 9 10 7 12 10 10 8 7 3 0.340461 88/89 RandomExcursionsVariant
14 12 6 5 15 10 10 7 6 4 0.036652 88/89 RandomExcursionsVariant
14 11 3 11 10 12 7 8 9 4 0.101765 88/89 RandomExcursionsVariant
15 10 8 10 3 9 17 5 6 6 0.007096 86/89 RandomExcursionsVariant
17 9 5 9 9 7 6 5 6 16 0.009284 87/89 RandomExcursionsVariant
15 4 8 11 11 8 9 11 7 5 0.168344 88/89 RandomExcursionsVariant
11 8 8 10 9 11 5 8 9 10 0.865697 87/89 RandomExcursionsVariant
7 7 11 12 12 6 6 9 4 15 0.101765 87/89 RandomExcursionsVariant
9 5 14 10 14 16 2 11 3 5 0.000749 86/89 RandomExcursionsVariant
10 13 13 8 8 8 4 13 8 4 0.126842 88/89 RandomExcursionsVariant
10 13 11 10 8 7 4 10 5 11 0.340461 88/89 RandomExcursionsVariant
8 11 14 8 16 8 2 9 4 9 0.015734 89/89 RandomExcursionsVariant
9 14 4 17 11 8 8 6 6 6 0.022187 89/89 RandomExcursionsVariant
12 11 5 14 7 10 9 9 3 9 0.168344 89/89 RandomExcursionsVariant
12 9 7 9 10 10 11 8 7 6 0.823278 89/89 RandomExcursionsVariant
9 10 15 11 12 5 9 11 9 9 0.739918 99/100 Serial
10 11 15 6 8 11 4 16 12 7 0.153763 100/100 Serial
12 6 7 15 9 11 11 9 9 11 0.739918 99/100 LinearComplexity
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
The minimum pass rate for each statistical test with the exception of the
random excursion (variant) test is approximately = 96 for a
sample size = 100 binary sequences.
The minimum pass rate for the random excursion (variant) test
is approximately = 85 for a sample size = 89 binary sequences.
For further guidelines construct a probability table using the MAPLE program
provided in the addendum section of the documentation.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
------------------------------------------------------------------------------
RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF PASSING SEQUENCES
------------------------------------------------------------------------------
generator is <../256N_1763944745.bin>
------------------------------------------------------------------------------
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPORTION STATISTICAL TEST
------------------------------------------------------------------------------
4 10 12 4 11 13 6 10 15 15 0.085587 99/100 Frequency
6 8 9 9 9 8 13 12 11 15 0.678686 99/100 BlockFrequency
4 6 12 13 9 11 11 12 14 8 0.419021 99/100 CumulativeSums
9 4 9 6 14 14 11 13 10 10 0.383827 99/100 CumulativeSums
12 10 13 6 6 10 10 13 7 13 0.616305 98/100 Runs
13 11 4 13 10 12 3 11 11 12 0.249284 98/100 LongestRun
13 12 10 13 10 14 6 5 12 5 0.289667 100/100 Rank
8 10 12 11 5 16 15 8 7 8 0.262249 98/100 FFT
13 8 8 1 13 13 8 9 13 14 0.102526 96/100 NonOverlappingTemplate
10 10 6 8 8 10 14 11 12 11 0.867692 99/100 NonOverlappingTemplate
8 11 9 13 10 10 8 12 8 11 0.971699 99/100 NonOverlappingTemplate
12 13 11 4 11 8 10 9 11 11 0.759756 100/100 NonOverlappingTemplate
5 12 10 12 12 6 10 9 10 14 0.637119 99/100 NonOverlappingTemplate
7 14 10 7 9 12 12 8 9 12 0.816537 100/100 NonOverlappingTemplate
10 9 15 8 8 7 14 9 9 11 0.719747 100/100 NonOverlappingTemplate
15 9 9 9 6 13 14 10 7 8 0.514124 98/100 NonOverlappingTemplate
11 10 9 9 5 14 10 12 8 12 0.779188 98/100 NonOverlappingTemplate
10 11 11 14 10 9 6 8 9 12 0.883171 100/100 NonOverlappingTemplate
11 7 15 14 9 7 9 11 6 11 0.534146 100/100 NonOverlappingTemplate
6 10 6 11 9 12 7 14 10 15 0.455937 100/100 NonOverlappingTemplate
4 13 11 9 10 15 13 6 4 15 0.071177 100/100 NonOverlappingTemplate
11 15 6 9 9 13 8 12 11 6 0.554420 99/100 NonOverlappingTemplate
5 9 11 10 15 10 13 8 10 9 0.678686 100/100 NonOverlappingTemplate
5 11 17 8 11 11 14 12 5 6 0.115387 100/100 NonOverlappingTemplate
9 9 2 8 14 10 15 10 14 9 0.171867 100/100 NonOverlappingTemplate
9 8 13 9 10 11 9 14 9 8 0.924076 99/100 NonOverlappingTemplate
3 12 9 12 13 17 7 4 12 11 0.055361 100/100 NonOverlappingTemplate
11 10 9 13 10 12 6 11 12 6 0.816537 96/100 NonOverlappingTemplate
15 8 8 14 10 8 10 10 8 9 0.759756 97/100 NonOverlappingTemplate
8 7 4 14 10 11 19 5 12 10 0.040108 100/100 NonOverlappingTemplate
11 14 10 9 7 9 8 4 12 16 0.289667 100/100 NonOverlappingTemplate
12 8 12 5 8 14 10 14 8 9 0.554420 99/100 NonOverlappingTemplate
9 9 8 13 12 10 8 11 9 11 0.978072 99/100 NonOverlappingTemplate
10 10 11 12 15 5 12 12 8 5 0.419021 99/100 NonOverlappingTemplate
8 9 14 12 8 12 11 8 12 6 0.759756 100/100 NonOverlappingTemplate
5 9 7 8 9 10 10 11 20 11 0.115387 100/100 NonOverlappingTemplate
13 11 10 8 14 9 12 6 9 8 0.779188 99/100 NonOverlappingTemplate
7 4 7 14 16 8 12 11 9 12 0.213309 99/100 NonOverlappingTemplate
16 9 14 11 6 10 7 12 11 4 0.213309 100/100 NonOverlappingTemplate
11 10 10 11 12 9 7 8 9 13 0.964295 99/100 NonOverlappingTemplate
9 8 10 11 8 9 8 20 10 7 0.191687 98/100 NonOverlappingTemplate
6 13 7 13 10 8 11 16 8 8 0.419021 100/100 NonOverlappingTemplate
10 7 13 17 6 12 6 9 10 10 0.319084 99/100 NonOverlappingTemplate
12 8 12 9 7 8 10 9 8 17 0.534146 98/100 NonOverlappingTemplate
10 9 9 10 8 8 10 15 13 8 0.851383 98/100 NonOverlappingTemplate
8 13 11 13 9 12 15 2 7 10 0.181557 100/100 NonOverlappingTemplate
6 13 11 8 18 8 14 6 6 10 0.102526 99/100 NonOverlappingTemplate
13 13 6 8 9 15 12 8 8 8 0.534146 100/100 NonOverlappingTemplate
7 9 5 9 8 7 17 15 10 13 0.153763 100/100 NonOverlappingTemplate
15 6 11 6 15 10 10 8 8 11 0.419021 98/100 NonOverlappingTemplate
10 13 9 7 8 11 10 11 10 11 0.978072 98/100 NonOverlappingTemplate
12 8 8 10 11 13 9 10 11 8 0.971699 97/100 NonOverlappingTemplate
7 11 7 10 13 12 6 9 13 12 0.719747 100/100 NonOverlappingTemplate
15 9 10 5 14 7 8 12 12 8 0.419021 100/100 NonOverlappingTemplate
10 10 14 8 12 11 7 8 4 16 0.275709 100/100 NonOverlappingTemplate
21 5 9 14 8 10 8 7 10 8 0.030806 96/100 NonOverlappingTemplate
6 7 15 8 12 10 7 10 14 11 0.494392 100/100 NonOverlappingTemplate
7 11 12 16 11 10 7 5 9 12 0.437274 99/100 NonOverlappingTemplate
9 10 11 10 6 11 16 8 7 12 0.616305 100/100 NonOverlappingTemplate
10 9 10 5 18 14 11 6 9 8 0.171867 100/100 NonOverlappingTemplate
12 4 12 12 16 12 7 12 5 8 0.162606 99/100 NonOverlappingTemplate
8 9 4 14 11 9 10 16 9 10 0.383827 98/100 NonOverlappingTemplate
9 10 4 12 13 7 9 11 13 12 0.595549 100/100 NonOverlappingTemplate
15 11 11 8 6 9 11 8 10 11 0.798139 100/100 NonOverlappingTemplate
10 13 11 8 6 5 10 14 11 12 0.574903 100/100 NonOverlappingTemplate
13 8 9 11 8 14 11 11 4 11 0.595549 100/100 NonOverlappingTemplate
11 9 13 11 8 11 9 8 10 10 0.987896 98/100 NonOverlappingTemplate
3 6 13 9 15 10 14 7 16 7 0.048716 99/100 NonOverlappingTemplate
16 9 4 3 11 13 10 12 9 13 0.102526 97/100 NonOverlappingTemplate
13 14 7 9 11 11 8 14 4 9 0.401199 99/100 NonOverlappingTemplate
8 11 16 11 11 10 9 5 12 7 0.514124 99/100 NonOverlappingTemplate
9 8 5 10 7 12 16 14 10 9 0.383827 100/100 NonOverlappingTemplate
13 6 9 5 14 10 14 7 11 11 0.401199 99/100 NonOverlappingTemplate
11 7 14 9 9 13 7 11 10 9 0.851383 98/100 NonOverlappingTemplate
9 11 8 6 12 9 8 8 18 11 0.350485 99/100 NonOverlappingTemplate
15 7 11 8 5 8 9 13 13 11 0.455937 100/100 NonOverlappingTemplate
8 9 14 14 11 10 11 5 5 13 0.366918 100/100 NonOverlappingTemplate
8 7 5 10 10 10 6 16 14 14 0.202268 98/100 NonOverlappingTemplate
11 13 3 6 16 9 14 12 7 9 0.115387 100/100 NonOverlappingTemplate
12 8 13 11 7 6 12 8 12 11 0.779188 100/100 NonOverlappingTemplate
14 8 11 11 14 10 8 9 6 9 0.739918 100/100 NonOverlappingTemplate
6 11 11 9 15 7 7 8 10 16 0.334538 99/100 NonOverlappingTemplate
13 8 8 1 13 13 8 9 13 14 0.102526 96/100 NonOverlappingTemplate
9 8 17 8 12 11 7 7 9 12 0.474986 98/100 NonOverlappingTemplate
7 13 9 17 5 6 9 7 15 12 0.096578 100/100 NonOverlappingTemplate
8 13 2 10 11 8 15 7 17 9 0.055361 100/100 NonOverlappingTemplate
6 11 13 8 10 14 7 12 7 12 0.616305 100/100 NonOverlappingTemplate
11 9 12 8 11 13 11 8 8 9 0.964295 99/100 NonOverlappingTemplate
15 13 7 12 9 9 4 10 11 10 0.474986 99/100 NonOverlappingTemplate
10 7 10 9 12 9 13 8 8 14 0.851383 99/100 NonOverlappingTemplate
13 12 3 10 9 14 12 10 8 9 0.455937 99/100 NonOverlappingTemplate
9 14 10 6 7 13 11 7 13 10 0.637119 98/100 NonOverlappingTemplate
14 7 10 10 14 7 12 8 10 8 0.719747 99/100 NonOverlappingTemplate
6 5 11 6 12 15 13 11 10 11 0.366918 99/100 NonOverlappingTemplate
7 8 8 12 9 11 10 13 15 7 0.678686 100/100 NonOverlappingTemplate
10 14 4 6 6 8 14 12 15 11 0.145326 100/100 NonOverlappingTemplate
7 14 9 4 16 8 13 6 15 8 0.075719 100/100 NonOverlappingTemplate
12 7 9 7 14 12 14 9 9 7 0.637119 99/100 NonOverlappingTemplate
13 10 11 11 7 12 8 9 7 12 0.897763 99/100 NonOverlappingTemplate
13 6 8 8 11 15 10 13 8 8 0.574903 97/100 NonOverlappingTemplate
19 8 5 10 13 10 8 6 11 10 0.122325 98/100 NonOverlappingTemplate
10 12 9 15 7 10 7 10 12 8 0.779188 100/100 NonOverlappingTemplate
13 5 12 9 13 14 8 8 4 14 0.191687 99/100 NonOverlappingTemplate
11 13 10 10 9 7 14 7 12 7 0.759756 99/100 NonOverlappingTemplate
7 9 12 10 11 8 8 9 11 15 0.834308 99/100 NonOverlappingTemplate
11 6 7 15 15 12 11 5 3 15 0.035174 100/100 NonOverlappingTemplate
15 15 7 12 11 15 10 8 3 4 0.037566 99/100 NonOverlappingTemplate
6 7 12 9 10 14 12 12 7 11 0.699313 100/100 NonOverlappingTemplate
9 13 8 16 5 6 11 9 11 12 0.366918 99/100 NonOverlappingTemplate
7 9 8 5 7 15 12 8 16 13 0.181557 100/100 NonOverlappingTemplate
13 8 15 6 5 14 9 10 8 12 0.319084 100/100 NonOverlappingTemplate
9 11 9 13 7 11 9 14 9 8 0.883171 100/100 NonOverlappingTemplate
11 7 11 15 5 7 10 10 13 11 0.534146 99/100 NonOverlappingTemplate
8 12 1 3 15 8 15 12 14 12 0.010237 100/100 NonOverlappingTemplate
9 13 7 5 13 12 13 5 10 13 0.350485 100/100 NonOverlappingTemplate
6 8 10 14 13 14 5 9 10 11 0.455937 100/100 NonOverlappingTemplate
14 11 9 8 7 11 13 10 10 7 0.834308 99/100 NonOverlappingTemplate
10 10 7 10 12 9 7 11 14 10 0.911413 100/100 NonOverlappingTemplate
6 7 12 8 11 18 10 13 11 4 0.108791 100/100 NonOverlappingTemplate
8 9 6 11 12 9 10 10 12 13 0.911413 100/100 NonOverlappingTemplate
14 13 5 16 14 7 9 4 8 10 0.085587 98/100 NonOverlappingTemplate
15 13 7 12 8 6 10 8 10 11 0.616305 99/100 NonOverlappingTemplate
13 11 8 12 9 9 14 10 8 6 0.779188 100/100 NonOverlappingTemplate
11 16 11 9 11 5 7 9 12 9 0.534146 100/100 NonOverlappingTemplate
9 14 11 9 8 8 8 10 9 14 0.851383 99/100 NonOverlappingTemplate
6 10 8 16 18 11 9 4 11 7 0.051942 99/100 NonOverlappingTemplate
9 10 14 9 10 4 9 7 13 15 0.366918 100/100 NonOverlappingTemplate
18 5 10 12 5 8 13 6 15 8 0.040108 97/100 NonOverlappingTemplate
11 7 7 9 19 11 8 8 14 6 0.115387 99/100 NonOverlappingTemplate
6 9 8 8 11 14 6 15 10 13 0.419021 100/100 NonOverlappingTemplate
7 9 11 4 9 18 13 16 9 4 0.021999 100/100 NonOverlappingTemplate
12 16 6 4 11 14 11 6 12 8 0.145326 98/100 NonOverlappingTemplate
19 10 8 10 7 7 9 9 10 11 0.304126 100/100 NonOverlappingTemplate
12 17 10 8 6 9 11 10 6 11 0.419021 100/100 NonOverlappingTemplate
6 8 12 13 9 11 11 14 7 9 0.719747 100/100 NonOverlappingTemplate
17 10 13 13 10 4 8 9 6 10 0.191687 100/100 NonOverlappingTemplate
17 13 4 7 11 8 11 14 7 8 0.129620 98/100 NonOverlappingTemplate
9 10 11 9 7 9 12 12 11 10 0.987896 100/100 NonOverlappingTemplate
13 11 10 13 8 9 12 7 5 12 0.678686 99/100 NonOverlappingTemplate
12 14 5 4 10 8 8 12 11 16 0.162606 97/100 NonOverlappingTemplate
9 8 7 8 9 11 8 12 17 11 0.554420 99/100 NonOverlappingTemplate
11 9 9 12 13 8 9 5 9 15 0.616305 98/100 NonOverlappingTemplate
4 13 13 9 9 14 10 8 11 9 0.554420 100/100 NonOverlappingTemplate
17 9 8 12 11 11 8 12 4 8 0.289667 99/100 NonOverlappingTemplate
10 11 9 8 10 11 15 10 9 7 0.897763 99/100 NonOverlappingTemplate
10 17 8 10 11 15 5 8 9 7 0.224821 100/100 NonOverlappingTemplate
14 9 8 6 9 8 15 10 10 11 0.657933 98/100 NonOverlappingTemplate
10 10 8 11 12 13 9 12 10 5 0.851383 100/100 NonOverlappingTemplate
8 11 9 12 12 12 10 11 11 4 0.779188 100/100 NonOverlappingTemplate
11 9 11 13 9 10 10 8 13 6 0.897763 97/100 NonOverlappingTemplate
6 8 13 5 14 10 7 8 14 15 0.191687 100/100 NonOverlappingTemplate
11 15 5 11 10 7 10 12 10 9 0.678686 100/100 NonOverlappingTemplate
12 12 12 6 6 10 9 10 14 9 0.719747 98/100 NonOverlappingTemplate
7 8 13 7 13 6 12 6 18 10 0.122325 100/100 NonOverlappingTemplate
7 8 15 9 9 14 11 13 6 8 0.474986 98/100 NonOverlappingTemplate
6 11 11 9 15 7 7 8 10 16 0.334538 99/100 NonOverlappingTemplate
12 12 9 13 7 11 7 8 14 7 0.678686 99/100 OverlappingTemplate
13 9 16 9 11 12 11 6 9 4 0.304126 99/100 Universal
11 5 8 10 11 13 17 10 9 6 0.304126 100/100 ApproximateEntropy
10 16 5 8 9 10 3 8 6 13 0.048716 87/88 RandomExcursions
8 4 9 12 8 7 10 7 9 14 0.392456 88/88 RandomExcursions
4 9 12 4 7 11 10 12 6 13 0.141256 87/88 RandomExcursions
6 9 16 3 9 9 6 13 10 7 0.061841 88/88 RandomExcursions
5 11 7 9 10 9 8 10 10 9 0.894201 87/88 RandomExcursions
10 11 12 4 12 3 9 10 11 6 0.162606 88/88 RandomExcursions
6 8 9 13 12 8 5 10 10 7 0.534146 88/88 RandomExcursions
9 13 5 9 8 9 4 9 9 13 0.350485 87/88 RandomExcursions
6 11 6 5 11 5 14 14 9 7 0.098036 87/88 RandomExcursionsVariant
5 12 3 6 10 12 14 8 6 12 0.061841 87/88 RandomExcursionsVariant
7 7 5 7 6 13 18 10 9 6 0.027405 87/88 RandomExcursionsVariant
7 9 5 9 9 7 13 11 7 11 0.611108 88/88 RandomExcursionsVariant
7 10 7 10 10 10 6 10 10 8 0.927083 88/88 RandomExcursionsVariant
9 7 9 4 12 8 10 9 9 11 0.714660 88/88 RandomExcursionsVariant
9 7 3 11 11 9 11 6 11 10 0.437274 87/88 RandomExcursionsVariant
8 6 12 4 9 8 7 13 11 10 0.392456 88/88 RandomExcursionsVariant
5 7 8 13 13 6 4 14 9 9 0.098036 88/88 RandomExcursionsVariant
3 14 10 5 14 5 9 5 8 15 0.008120 87/88 RandomExcursionsVariant
7 13 8 7 8 12 13 3 6 11 0.151616 87/88 RandomExcursionsVariant
6 16 9 7 5 10 4 9 11 11 0.098036 86/88 RandomExcursionsVariant
11 10 6 7 7 9 8 8 6 16 0.275709 87/88 RandomExcursionsVariant
10 9 7 6 10 8 7 12 8 11 0.834308 87/88 RandomExcursionsVariant
9 4 12 7 9 7 14 7 5 14 0.098036 87/88 RandomExcursionsVariant
5 7 12 8 13 8 7 11 8 9 0.559523 87/88 RandomExcursionsVariant
5 7 6 13 9 15 8 9 11 5 0.141256 87/88 RandomExcursionsVariant
5 5 10 9 19 10 7 9 9 5 0.017912 87/88 RandomExcursionsVariant
10 17 10 10 10 10 9 8 8 8 0.719747 99/100 Serial
13 11 14 8 6 13 8 8 10 9 0.699313 100/100 Serial
15 12 8 14 8 6 6 5 19 7 0.017912 99/100 LinearComplexity
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
The minimum pass rate for each statistical test with the exception of the
random excursion (variant) test is approximately = 96 for a
sample size = 100 binary sequences.
The minimum pass rate for the random excursion (variant) test
is approximately = 84 for a sample size = 88 binary sequences.
For further guidelines construct a probability table using the MAPLE program
provided in the addendum section of the documentation.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
NIST sts-2.1.2 Breeze256
100 samples with 8,000.000 bits (10**6 bytes)
------------------------------------------------------------------------------
RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF PASSING SEQUENCES
------------------------------------------------------------------------------
generator is <../512N_449935155.bin>
------------------------------------------------------------------------------
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPORTION STATISTICAL TEST
------------------------------------------------------------------------------
7 10 16 13 8 8 12 7 12 7 0.455937 100/100 Frequency
7 8 12 10 14 11 10 6 16 6 0.334538 100/100 BlockFrequency
13 8 8 11 14 5 13 11 8 9 0.595549 100/100 CumulativeSums
7 14 18 9 6 7 10 12 11 6 0.137282 99/100 CumulativeSums
16 10 4 13 13 11 6 13 3 11 0.055361 97/100 Runs
8 15 7 14 8 10 6 10 17 5 0.096578 100/100 LongestRun
5 11 15 14 11 7 8 8 9 12 0.437274 100/100 Rank
9 14 10 13 13 5 9 8 7 12 0.554420 99/100 FFT
9 14 9 10 10 6 8 12 11 11 0.883171 100/100 NonOverlappingTemplate
10 14 9 14 3 8 12 6 14 10 0.202268 100/100 NonOverlappingTemplate
9 9 9 9 8 9 12 7 13 15 0.779188 99/100 NonOverlappingTemplate
7 10 9 9 11 13 12 8 13 8 0.897763 98/100 NonOverlappingTemplate
15 13 9 7 7 5 10 10 12 12 0.474986 98/100 NonOverlappingTemplate
11 11 10 6 11 8 6 8 12 17 0.383827 98/100 NonOverlappingTemplate
12 8 15 10 9 12 6 13 6 9 0.534146 100/100 NonOverlappingTemplate
6 11 9 12 6 11 6 11 12 16 0.383827 99/100 NonOverlappingTemplate
13 11 15 8 8 10 9 9 7 10 0.798139 98/100 NonOverlappingTemplate
12 11 11 8 12 9 5 10 13 9 0.834308 100/100 NonOverlappingTemplate
11 13 8 7 6 14 6 14 12 9 0.419021 98/100 NonOverlappingTemplate
11 9 10 11 8 7 6 12 12 14 0.779188 97/100 NonOverlappingTemplate
9 11 11 10 8 8 10 11 13 9 0.987896 98/100 NonOverlappingTemplate
10 11 8 10 10 9 8 14 10 10 0.978072 97/100 NonOverlappingTemplate
5 7 12 11 13 8 9 15 11 9 0.534146 99/100 NonOverlappingTemplate
5 7 8 11 9 14 13 13 8 12 0.514124 99/100 NonOverlappingTemplate
9 11 9 12 9 12 15 8 8 7 0.798139 99/100 NonOverlappingTemplate
9 12 13 11 11 11 8 8 10 7 0.946308 99/100 NonOverlappingTemplate
11 10 13 7 7 11 6 6 15 14 0.334538 98/100 NonOverlappingTemplate
8 11 6 9 12 10 10 12 12 10 0.946308 98/100 NonOverlappingTemplate
15 7 10 10 12 14 9 5 8 10 0.494392 99/100 NonOverlappingTemplate
13 13 9 12 7 8 11 10 8 9 0.897763 96/100 NonOverlappingTemplate
12 9 7 8 5 4 8 24 14 9 0.000513 99/100 NonOverlappingTemplate
15 7 6 12 10 15 14 3 9 9 0.102526 100/100 NonOverlappingTemplate
8 7 16 11 7 13 8 11 8 11 0.554420 100/100 NonOverlappingTemplate
9 12 9 13 9 4 13 8 15 8 0.401199 100/100 NonOverlappingTemplate
2 13 6 14 12 15 12 8 6 12 0.062821 100/100 NonOverlappingTemplate
6 9 9 10 11 11 14 9 10 11 0.924076 100/100 NonOverlappingTemplate
7 8 11 13 11 8 11 7 17 7 0.383827 98/100 NonOverlappingTemplate
9 4 13 10 7 15 17 9 9 7 0.122325 100/100 NonOverlappingTemplate
10 9 10 8 8 14 9 9 9 14 0.883171 100/100 NonOverlappingTemplate
11 11 12 5 15 9 4 11 10 12 0.366918 99/100 NonOverlappingTemplate
12 7 8 11 8 13 7 10 11 13 0.834308 99/100 NonOverlappingTemplate
7 10 10 12 13 12 12 15 6 3 0.213309 99/100 NonOverlappingTemplate
11 3 15 6 10 11 10 12 11 11 0.366918 98/100 NonOverlappingTemplate
10 12 6 14 13 11 11 8 3 12 0.319084 98/100 NonOverlappingTemplate
8 9 11 10 13 8 8 13 12 8 0.911413 99/100 NonOverlappingTemplate
12 6 14 6 6 10 7 14 11 14 0.275709 100/100 NonOverlappingTemplate
11 12 13 5 13 10 10 12 5 9 0.554420 99/100 NonOverlappingTemplate
20 13 10 6 10 11 7 6 10 7 0.066882 99/100 NonOverlappingTemplate
6 12 8 14 11 10 8 14 8 9 0.678686 100/100 NonOverlappingTemplate
9 14 11 9 11 9 8 13 8 8 0.897763 98/100 NonOverlappingTemplate
7 11 6 13 10 13 16 12 4 8 0.191687 99/100 NonOverlappingTemplate
7 11 10 14 12 12 8 12 8 6 0.719747 99/100 NonOverlappingTemplate
9 15 9 5 3 13 13 7 13 13 0.102526 100/100 NonOverlappingTemplate
14 7 9 11 8 14 6 8 11 12 0.616305 100/100 NonOverlappingTemplate
11 18 10 4 8 10 15 5 9 10 0.075719 100/100 NonOverlappingTemplate
12 7 12 15 7 6 8 10 11 12 0.574903 99/100 NonOverlappingTemplate
10 11 14 13 4 8 9 11 11 9 0.637119 98/100 NonOverlappingTemplate
12 8 7 13 9 12 12 7 10 10 0.883171 98/100 NonOverlappingTemplate
11 8 13 15 12 8 6 8 14 5 0.289667 100/100 NonOverlappingTemplate
6 11 10 10 8 9 11 9 14 12 0.883171 100/100 NonOverlappingTemplate
6 18 9 10 8 7 8 5 13 16 0.051942 100/100 NonOverlappingTemplate
10 11 6 16 9 5 13 13 8 9 0.334538 99/100 NonOverlappingTemplate
8 13 12 9 12 4 11 8 12 11 0.657933 100/100 NonOverlappingTemplate
8 8 10 10 16 14 13 6 5 10 0.275709 99/100 NonOverlappingTemplate
9 13 10 9 13 8 7 14 9 8 0.798139 100/100 NonOverlappingTemplate
9 11 11 10 7 8 6 12 16 10 0.616305 100/100 NonOverlappingTemplate
9 9 13 5 6 9 10 12 18 9 0.202268 99/100 NonOverlappingTemplate
14 12 10 11 7 7 10 13 11 5 0.595549 99/100 NonOverlappingTemplate
15 6 6 13 9 6 11 7 13 14 0.224821 98/100 NonOverlappingTemplate
11 11 15 9 10 5 6 11 11 11 0.616305 99/100 NonOverlappingTemplate
5 9 10 7 7 14 12 14 12 10 0.494392 98/100 NonOverlappingTemplate
7 12 10 16 12 9 6 12 8 8 0.514124 99/100 NonOverlappingTemplate
10 8 7 13 3 16 15 10 8 10 0.137282 99/100 NonOverlappingTemplate
6 8 16 10 11 12 15 5 10 7 0.213309 100/100 NonOverlappingTemplate
8 7 11 10 15 9 15 4 10 11 0.334538 98/100 NonOverlappingTemplate
10 12 13 16 8 11 4 12 6 8 0.249284 97/100 NonOverlappingTemplate
13 4 12 9 11 14 10 12 10 5 0.383827 100/100 NonOverlappingTemplate
7 13 13 13 11 15 10 8 4 6 0.224821 100/100 NonOverlappingTemplate
5 11 7 9 8 12 9 15 6 18 0.090936 99/100 NonOverlappingTemplate
12 16 11 7 11 10 5 10 7 11 0.474986 100/100 NonOverlappingTemplate
6 7 10 16 10 7 17 13 8 6 0.096578 100/100 NonOverlappingTemplate
16 11 9 10 10 10 10 10 7 7 0.779188 98/100 NonOverlappingTemplate
9 14 9 10 10 7 7 12 11 11 0.897763 100/100 NonOverlappingTemplate
9 10 13 6 8 16 6 6 8 18 0.055361 100/100 NonOverlappingTemplate
7 12 7 13 6 10 12 9 8 16 0.419021 100/100 NonOverlappingTemplate
13 2 13 12 8 11 12 8 11 10 0.350485 99/100 NonOverlappingTemplate
11 11 8 15 11 6 7 13 11 7 0.574903 97/100 NonOverlappingTemplate
8 15 7 17 5 11 9 10 11 7 0.191687 100/100 NonOverlappingTemplate
10 8 9 7 10 13 11 11 14 7 0.834308 100/100 NonOverlappingTemplate
10 15 12 7 4 13 18 6 7 8 0.040108 99/100 NonOverlappingTemplate
7 9 10 10 7 8 15 7 13 14 0.514124 99/100 NonOverlappingTemplate
7 5 15 7 8 11 12 9 11 15 0.319084 99/100 NonOverlappingTemplate
11 10 7 9 10 12 12 12 8 9 0.971699 99/100 NonOverlappingTemplate
8 12 17 8 9 10 13 8 7 8 0.455937 100/100 NonOverlappingTemplate
13 7 9 11 9 11 6 13 12 9 0.816537 98/100 NonOverlappingTemplate
15 10 10 9 13 10 13 11 1 8 0.162606 98/100 NonOverlappingTemplate
13 11 7 9 8 8 15 6 12 11 0.595549 96/100 NonOverlappingTemplate
6 17 8 12 13 5 12 6 10 11 0.171867 100/100 NonOverlappingTemplate
6 7 6 14 9 7 13 11 16 11 0.249284 100/100 NonOverlappingTemplate
11 13 13 16 10 7 6 9 5 10 0.304126 100/100 NonOverlappingTemplate
11 7 9 8 10 8 8 10 15 14 0.699313 100/100 NonOverlappingTemplate
9 11 15 7 4 11 13 12 7 11 0.383827 99/100 NonOverlappingTemplate
14 9 8 12 9 11 8 11 4 14 0.494392 99/100 NonOverlappingTemplate
10 10 14 6 13 7 8 14 9 9 0.616305 100/100 NonOverlappingTemplate
13 10 14 7 10 7 18 5 10 6 0.096578 98/100 NonOverlappingTemplate
10 17 11 8 7 8 11 11 12 5 0.366918 99/100 NonOverlappingTemplate
11 11 14 11 10 11 7 6 7 12 0.759756 100/100 NonOverlappingTemplate
12 10 9 9 9 12 9 12 10 8 0.991468 97/100 NonOverlappingTemplate
9 9 11 8 11 16 9 11 10 6 0.719747 98/100 NonOverlappingTemplate
11 13 6 10 11 10 6 7 14 12 0.616305 99/100 NonOverlappingTemplate
14 8 11 9 7 11 9 6 10 15 0.595549 99/100 NonOverlappingTemplate
6 12 10 8 12 16 6 17 6 7 0.080519 100/100 NonOverlappingTemplate
9 11 10 9 10 13 13 7 8 10 0.946308 99/100 NonOverlappingTemplate
9 14 10 9 14 9 10 14 8 3 0.319084 100/100 NonOverlappingTemplate
13 11 16 10 12 3 11 9 13 2 0.042808 99/100 NonOverlappingTemplate
12 7 12 17 6 9 14 8 6 9 0.213309 99/100 NonOverlappingTemplate
13 14 9 10 8 8 11 5 10 12 0.699313 97/100 NonOverlappingTemplate
12 10 8 10 8 11 13 10 13 5 0.779188 100/100 NonOverlappingTemplate
12 9 11 15 11 10 9 10 4 9 0.637119 100/100 NonOverlappingTemplate
10 7 7 10 10 9 6 12 19 10 0.213309 98/100 NonOverlappingTemplate
7 8 12 14 8 15 10 11 10 5 0.455937 100/100 NonOverlappingTemplate
12 13 6 10 9 10 12 10 8 10 0.924076 99/100 NonOverlappingTemplate
8 7 14 8 11 10 9 10 15 8 0.699313 99/100 NonOverlappingTemplate
10 15 6 8 11 9 11 12 9 9 0.798139 98/100 NonOverlappingTemplate
9 12 10 9 11 6 10 15 8 10 0.816537 100/100 NonOverlappingTemplate
11 17 9 7 14 13 6 5 8 10 0.162606 97/100 NonOverlappingTemplate
10 6 7 9 11 11 7 12 12 15 0.637119 100/100 NonOverlappingTemplate
13 6 12 14 10 11 10 8 10 6 0.678686 100/100 NonOverlappingTemplate
14 10 11 6 11 7 10 12 9 10 0.851383 99/100 NonOverlappingTemplate
3 14 9 10 11 7 14 10 10 12 0.383827 100/100 NonOverlappingTemplate
11 9 6 8 11 14 13 11 8 9 0.798139 99/100 NonOverlappingTemplate
13 8 7 13 4 9 8 9 17 12 0.181557 97/100 NonOverlappingTemplate
7 8 10 11 9 14 16 7 9 9 0.554420 100/100 NonOverlappingTemplate
15 10 13 11 12 7 7 9 9 7 0.657933 97/100 NonOverlappingTemplate
12 5 9 10 14 5 11 8 13 13 0.401199 100/100 NonOverlappingTemplate
7 9 13 7 12 9 10 12 13 8 0.834308 99/100 NonOverlappingTemplate
9 12 9 9 8 12 9 15 8 9 0.867692 100/100 NonOverlappingTemplate
13 8 12 10 4 7 13 9 14 10 0.455937 100/100 NonOverlappingTemplate
8 13 11 12 10 11 12 4 10 9 0.739918 100/100 NonOverlappingTemplate
11 12 7 7 12 11 8 12 9 11 0.924076 99/100 NonOverlappingTemplate
10 10 9 15 12 9 11 11 4 9 0.637119 96/100 NonOverlappingTemplate
12 9 6 12 13 14 6 7 9 12 0.534146 97/100 NonOverlappingTemplate
8 13 10 13 10 10 9 9 7 11 0.946308 100/100 NonOverlappingTemplate
12 11 12 10 14 9 11 7 6 8 0.779188 98/100 NonOverlappingTemplate
13 17 11 8 8 13 13 10 4 3 0.048716 100/100 NonOverlappingTemplate
10 8 11 9 6 7 11 13 13 12 0.798139 100/100 NonOverlappingTemplate
8 7 10 13 14 5 12 8 12 11 0.574903 99/100 NonOverlappingTemplate
15 8 14 6 6 12 7 11 10 11 0.419021 100/100 NonOverlappingTemplate
14 11 10 7 14 9 4 5 13 13 0.202268 98/100 NonOverlappingTemplate
13 6 7 11 16 10 10 10 5 12 0.350485 99/100 NonOverlappingTemplate
7 12 6 11 11 14 12 9 8 10 0.779188 99/100 NonOverlappingTemplate
9 10 5 11 14 8 10 9 8 16 0.455937 98/100 NonOverlappingTemplate
11 10 15 14 6 6 6 10 14 8 0.275709 96/100 NonOverlappingTemplate
10 10 10 14 12 8 9 9 12 6 0.867692 96/100 NonOverlappingTemplate
10 12 13 12 11 10 9 8 6 9 0.911413 100/100 NonOverlappingTemplate
16 11 9 10 10 10 10 9 8 7 0.816537 98/100 NonOverlappingTemplate
12 12 12 7 4 10 10 11 11 11 0.739918 99/100 OverlappingTemplate
5 7 11 13 10 6 11 16 14 7 0.202268 100/100 Universal
12 15 9 11 8 11 7 7 9 11 0.779188 100/100 ApproximateEntropy
7 11 8 7 9 7 16 9 9 3 0.162606 85/86 RandomExcursions
10 11 8 8 9 9 6 6 7 12 0.834308 85/86 RandomExcursions
11 6 6 8 12 6 6 12 7 12 0.414525 85/86 RandomExcursions
9 14 6 9 7 5 7 6 10 13 0.293235 85/86 RandomExcursions
8 7 10 13 10 5 9 11 7 6 0.611108 86/86 RandomExcursions
13 11 7 6 7 8 6 11 10 7 0.611108 85/86 RandomExcursions
13 12 11 12 8 10 3 4 5 8 0.090936 85/86 RandomExcursions
13 6 5 10 10 5 8 9 6 14 0.213309 84/86 RandomExcursions
5 11 10 7 10 9 8 6 9 11 0.811993 84/86 RandomExcursionsVariant
8 6 12 8 6 11 8 16 6 5 0.131500 85/86 RandomExcursionsVariant
9 6 7 11 11 13 3 11 7 8 0.311542 86/86 RandomExcursionsVariant
11 5 8 3 13 11 13 8 9 5 0.122325 85/86 RandomExcursionsVariant
10 9 3 11 11 8 8 6 9 11 0.559523 86/86 RandomExcursionsVariant
10 6 9 10 5 9 9 10 9 9 0.927083 85/86 RandomExcursionsVariant
9 8 10 8 6 6 11 8 11 9 0.911413 84/86 RandomExcursionsVariant
13 8 9 6 12 11 5 5 5 12 0.199580 84/86 RandomExcursionsVariant
18 7 11 6 4 5 12 10 10 3 0.005166 86/86 RandomExcursionsVariant
7 8 9 5 4 12 7 10 12 12 0.350485 85/86 RandomExcursionsVariant
11 14 4 5 7 7 8 5 9 16 0.032381 86/86 RandomExcursionsVariant
14 5 9 3 8 7 9 11 11 9 0.242986 85/86 RandomExcursionsVariant
14 5 7 5 3 8 6 7 14 17 0.002707 85/86 RandomExcursionsVariant
11 8 9 3 10 6 12 10 9 8 0.534146 85/86 RandomExcursionsVariant
14 8 6 9 9 2 11 10 4 13 0.057146 85/86 RandomExcursionsVariant
13 6 8 9 9 11 5 5 11 9 0.484646 85/86 RandomExcursionsVariant
12 8 7 10 7 6 11 6 10 9 0.788728 86/86 RandomExcursionsVariant
13 9 6 9 7 4 11 8 8 11 0.509162 86/86 RandomExcursionsVariant
8 13 8 9 9 13 11 9 10 10 0.964295 99/100 Serial
9 8 8 13 7 12 16 6 9 12 0.455937 100/100 Serial
11 9 10 11 12 7 14 7 11 8 0.867692 99/100 LinearComplexity
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
The minimum pass rate for each statistical test with the exception of the
random excursion (variant) test is approximately = 96 for a
sample size = 100 binary sequences.
The minimum pass rate for the random excursion (variant) test
is approximately = 82 for a sample size = 86 binary sequences.
For further guidelines construct a probability table using the MAPLE program
provided in the addendum section of the documentation.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
------------------------------------------------------------------------------
RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF PASSING SEQUENCES
------------------------------------------------------------------------------
generator is <../512N_730809286.bin>
------------------------------------------------------------------------------
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPORTION STATISTICAL TEST
------------------------------------------------------------------------------
10 8 10 7 9 11 12 12 6 15 0.699313 98/100 Frequency
12 12 9 8 11 10 4 11 12 11 0.779188 99/100 BlockFrequency
11 13 7 10 7 7 8 11 19 7 0.153763 98/100 CumulativeSums
12 7 10 7 9 9 15 14 6 11 0.514124 98/100 CumulativeSums
13 11 12 13 10 8 10 5 10 8 0.779188 100/100 Runs
12 15 9 12 8 10 13 2 14 5 0.085587 100/100 LongestRun
16 7 6 12 11 18 3 12 10 5 0.013569 97/100 Rank
8 15 6 11 9 11 11 9 7 13 0.657933 100/100 FFT
8 19 7 9 10 11 8 12 10 6 0.213309 99/100 NonOverlappingTemplate
15 4 9 12 7 7 14 10 11 11 0.334538 97/100 NonOverlappingTemplate
14 6 10 7 11 8 12 10 6 16 0.334538 98/100 NonOverlappingTemplate
11 5 13 9 10 7 10 13 13 9 0.699313 100/100 NonOverlappingTemplate
7 12 6 12 11 15 8 6 14 9 0.383827 99/100 NonOverlappingTemplate
13 11 11 5 9 9 11 9 13 9 0.834308 96/100 NonOverlappingTemplate
6 13 10 8 6 9 14 9 11 14 0.534146 100/100 NonOverlappingTemplate
7 11 11 5 7 6 12 10 15 16 0.181557 98/100 NonOverlappingTemplate
9 13 10 13 9 10 9 9 10 8 0.978072 98/100 NonOverlappingTemplate
11 10 9 9 5 13 21 5 9 8 0.026948 99/100 NonOverlappingTemplate
6 9 13 9 5 13 12 6 9 18 0.102526 100/100 NonOverlappingTemplate
12 12 6 8 14 9 8 15 8 8 0.514124 100/100 NonOverlappingTemplate
8 8 8 15 11 9 12 9 11 9 0.867692 100/100 NonOverlappingTemplate
13 13 8 8 9 12 5 11 8 13 0.637119 99/100 NonOverlappingTemplate
11 11 10 8 7 9 7 15 13 9 0.739918 100/100 NonOverlappingTemplate
12 10 7 12 9 6 9 14 8 13 0.699313 99/100 NonOverlappingTemplate
10 7 11 6 9 12 14 11 8 12 0.779188 100/100 NonOverlappingTemplate
5 16 16 8 7 8 8 8 12 12 0.162606 100/100 NonOverlappingTemplate
10 10 11 10 9 8 10 16 8 8 0.834308 100/100 NonOverlappingTemplate
7 15 6 9 11 11 11 5 13 12 0.419021 98/100 NonOverlappingTemplate
7 9 15 9 9 10 11 10 8 12 0.867692 100/100 NonOverlappingTemplate
11 10 8 8 14 7 8 12 12 10 0.867692 99/100 NonOverlappingTemplate
10 8 10 9 9 13 8 8 12 13 0.935716 99/100 NonOverlappingTemplate
8 13 7 12 8 7 11 14 7 13 0.595549 100/100 NonOverlappingTemplate
4 13 11 17 11 10 9 8 6 11 0.224821 99/100 NonOverlappingTemplate
13 5 16 6 6 20 8 10 7 9 0.010237 98/100 NonOverlappingTemplate
5 18 11 5 9 12 14 8 8 10 0.108791 100/100 NonOverlappingTemplate
12 9 7 12 12 9 11 8 16 4 0.350485 98/100 NonOverlappingTemplate
7 16 10 8 13 9 12 10 6 9 0.534146 98/100 NonOverlappingTemplate
10 7 11 15 9 8 8 7 13 12 0.678686 99/100 NonOverlappingTemplate
11 9 9 11 12 4 8 15 7 14 0.366918 100/100 NonOverlappingTemplate
10 13 5 12 10 12 12 10 10 6 0.719747 100/100 NonOverlappingTemplate
6 12 13 9 14 11 12 9 3 11 0.334538 99/100 NonOverlappingTemplate
12 12 11 13 8 13 9 11 6 5 0.595549 98/100 NonOverlappingTemplate
9 16 13 8 10 10 12 8 8 6 0.554420 100/100 NonOverlappingTemplate
17 8 5 11 9 11 11 12 9 7 0.383827 97/100 NonOverlappingTemplate
9 14 9 9 10 10 11 11 6 11 0.924076 100/100 NonOverlappingTemplate
12 10 7 7 11 11 6 13 13 10 0.759756 98/100 NonOverlappingTemplate
10 9 13 11 7 12 10 6 8 14 0.739918 99/100 NonOverlappingTemplate
4 11 10 19 5 12 11 12 9 7 0.062821 99/100 NonOverlappingTemplate
15 13 11 12 12 11 10 5 4 7 0.249284 99/100 NonOverlappingTemplate
14 13 8 17 12 10 11 5 6 4 0.066882 99/100 NonOverlappingTemplate
9 7 12 11 11 10 12 8 10 10 0.983453 100/100 NonOverlappingTemplate
8 9 15 12 10 6 11 11 6 12 0.616305 98/100 NonOverlappingTemplate
14 9 10 10 11 6 5 13 12 10 0.616305 100/100 NonOverlappingTemplate
10 16 2 10 7 8 16 12 9 10 0.080519 100/100 NonOverlappingTemplate
10 9 7 8 17 7 11 13 9 9 0.494392 99/100 NonOverlappingTemplate
6 11 12 6 10 11 11 11 7 15 0.595549 99/100 NonOverlappingTemplate
7 10 12 12 7 10 11 15 7 9 0.719747 100/100 NonOverlappingTemplate
11 10 10 12 8 10 12 12 7 8 0.964295 99/100 NonOverlappingTemplate
9 9 12 9 7 11 12 9 9 13 0.955835 100/100 NonOverlappingTemplate
8 14 8 9 10 12 13 7 8 11 0.816537 98/100 NonOverlappingTemplate
9 6 14 14 6 6 6 9 16 14 0.090936 100/100 NonOverlappingTemplate
10 12 8 9 6 11 15 11 8 10 0.779188 99/100 NonOverlappingTemplate
8 12 13 9 6 9 14 6 11 12 0.616305 100/100 NonOverlappingTemplate
13 9 12 11 14 9 7 12 8 5 0.595549 98/100 NonOverlappingTemplate
4 14 8 10 15 12 10 5 12 10 0.249284 100/100 NonOverlappingTemplate
14 12 9 11 6 10 6 10 14 8 0.595549 98/100 NonOverlappingTemplate
6 14 8 9 9 13 10 11 9 11 0.834308 99/100 NonOverlappingTemplate
10 12 9 10 12 12 6 6 12 11 0.834308 100/100 NonOverlappingTemplate
6 12 5 12 11 8 15 9 12 10 0.494392 100/100 NonOverlappingTemplate
8 8 11 8 12 8 15 14 7 9 0.616305 98/100 NonOverlappingTemplate
10 12 14 6 13 14 5 11 9 6 0.319084 98/100 NonOverlappingTemplate
7 6 11 12 9 9 15 8 9 14 0.554420 99/100 NonOverlappingTemplate
16 10 9 10 3 11 6 9 14 12 0.191687 100/100 NonOverlappingTemplate
7 7 11 9 10 12 13 10 10 11 0.946308 100/100 NonOverlappingTemplate
14 12 6 5 6 16 9 12 12 8 0.181557 98/100 NonOverlappingTemplate
10 9 8 10 11 8 13 6 12 13 0.851383 100/100 NonOverlappingTemplate
13 9 5 10 8 9 13 7 14 12 0.554420 99/100 NonOverlappingTemplate
5 7 9 9 10 11 4 18 15 12 0.055361 99/100 NonOverlappingTemplate
13 9 8 11 7 14 7 12 9 10 0.798139 100/100 NonOverlappingTemplate
11 11 9 8 8 13 13 11 9 7 0.911413 100/100 NonOverlappingTemplate
9 7 8 9 8 13 9 12 10 15 0.759756 99/100 NonOverlappingTemplate
15 9 12 6 7 11 11 12 8 9 0.678686 99/100 NonOverlappingTemplate
8 19 7 9 10 11 8 12 10 6 0.213309 99/100 NonOverlappingTemplate
8 11 8 9 12 5 13 12 10 12 0.779188 98/100 NonOverlappingTemplate
10 5 11 10 11 7 13 14 10 9 0.719747 100/100 NonOverlappingTemplate
9 10 14 6 8 11 10 8 14 10 0.759756 100/100 NonOverlappingTemplate
6 15 8 12 11 13 7 9 7 12 0.514124 97/100 NonOverlappingTemplate
11 9 10 9 7 12 10 11 8 13 0.964295 98/100 NonOverlappingTemplate
10 8 11 16 8 12 9 10 5 11 0.574903 99/100 NonOverlappingTemplate
12 16 16 9 10 4 9 9 6 9 0.153763 100/100 NonOverlappingTemplate
10 13 10 9 8 7 13 13 9 8 0.867692 100/100 NonOverlappingTemplate
8 8 6 13 9 12 9 10 14 11 0.779188 99/100 NonOverlappingTemplate
8 12 10 8 14 10 9 10 12 7 0.897763 100/100 NonOverlappingTemplate
12 13 4 13 11 9 6 14 8 10 0.383827 99/100 NonOverlappingTemplate
13 9 5 12 11 5 6 14 13 12 0.275709 99/100 NonOverlappingTemplate
6 12 6 14 9 6 14 13 14 6 0.181557 98/100 NonOverlappingTemplate
8 12 13 9 11 7 16 7 8 9 0.554420 98/100 NonOverlappingTemplate
6 10 11 9 9 10 15 10 8 12 0.816537 100/100 NonOverlappingTemplate
9 11 11 13 8 10 9 12 10 7 0.964295 99/100 NonOverlappingTemplate
4 12 12 15 12 10 8 7 9 11 0.455937 99/100 NonOverlappingTemplate
10 14 9 7 11 10 13 9 8 9 0.897763 98/100 NonOverlappingTemplate
7 15 11 11 9 13 9 11 8 6 0.657933 100/100 NonOverlappingTemplate
12 12 8 9 9 14 3 13 14 6 0.213309 98/100 NonOverlappingTemplate
7 14 14 14 7 9 9 8 6 12 0.419021 99/100 NonOverlappingTemplate
13 10 10 14 9 9 7 10 10 8 0.911413 100/100 NonOverlappingTemplate
13 12 9 9 7 10 10 12 10 8 0.955835 100/100 NonOverlappingTemplate
13 10 7 13 7 11 4 11 13 11 0.494392 99/100 NonOverlappingTemplate
15 9 17 5 8 6 4 11 11 14 0.042808 99/100 NonOverlappingTemplate
5 15 14 10 6 11 13 9 13 4 0.129620 100/100 NonOverlappingTemplate
12 11 6 8 14 13 11 5 7 13 0.401199 99/100 NonOverlappingTemplate
9 8 9 10 6 13 15 13 11 6 0.514124 100/100 NonOverlappingTemplate
11 11 9 11 7 11 7 10 18 5 0.262249 99/100 NonOverlappingTemplate
9 6 11 7 7 9 7 15 12 17 0.191687 100/100 NonOverlappingTemplate
4 16 8 11 10 9 4 15 14 9 0.075719 100/100 NonOverlappingTemplate
12 7 16 8 13 7 7 11 8 11 0.474986 99/100 NonOverlappingTemplate
6 10 11 11 14 12 7 4 14 11 0.350485 99/100 NonOverlappingTemplate
14 7 10 7 10 9 11 10 10 12 0.911413 100/100 NonOverlappingTemplate
4 9 14 16 13 7 13 7 6 11 0.115387 99/100 NonOverlappingTemplate
14 5 11 13 7 11 8 16 8 7 0.249284 99/100 NonOverlappingTemplate
8 14 8 14 4 7 11 11 12 11 0.419021 100/100 NonOverlappingTemplate
13 10 9 8 7 8 11 15 11 8 0.759756 99/100 NonOverlappingTemplate
9 16 8 14 4 8 15 8 10 8 0.162606 100/100 NonOverlappingTemplate
11 7 13 7 10 15 12 9 7 9 0.657933 98/100 NonOverlappingTemplate
10 8 20 16 9 9 6 8 8 6 0.032923 99/100 NonOverlappingTemplate
6 10 7 13 11 13 11 14 9 6 0.554420 100/100 NonOverlappingTemplate
5 9 10 14 11 12 12 8 6 13 0.534146 100/100 NonOverlappingTemplate
10 7 12 8 12 5 10 11 11 14 0.699313 100/100 NonOverlappingTemplate
8 12 12 13 10 9 11 5 11 9 0.834308 100/100 NonOverlappingTemplate
8 9 9 7 13 12 9 9 8 16 0.637119 100/100 NonOverlappingTemplate
7 9 10 6 6 14 16 12 11 9 0.350485 100/100 NonOverlappingTemplate
7 8 12 10 10 8 9 16 10 10 0.759756 98/100 NonOverlappingTemplate
10 6 10 9 9 14 9 13 9 11 0.867692 99/100 NonOverlappingTemplate
4 6 11 7 8 11 16 14 17 6 0.030806 99/100 NonOverlappingTemplate
16 8 6 8 5 13 4 20 14 6 0.001895 100/100 NonOverlappingTemplate
8 6 8 9 11 12 7 16 9 14 0.419021 100/100 NonOverlappingTemplate
8 6 15 11 15 12 8 9 7 9 0.437274 100/100 NonOverlappingTemplate
6 13 8 10 9 17 16 7 4 10 0.066882 99/100 NonOverlappingTemplate
10 9 12 11 12 4 11 7 12 12 0.699313 100/100 NonOverlappingTemplate
8 9 9 7 11 10 7 15 11 13 0.739918 100/100 NonOverlappingTemplate
10 20 12 10 9 7 13 8 4 7 0.045675 98/100 NonOverlappingTemplate
15 4 9 9 9 13 11 9 9 12 0.534146 98/100 NonOverlappingTemplate
16 7 10 8 7 11 14 5 10 12 0.319084 98/100 NonOverlappingTemplate
10 7 8 11 9 3 17 13 11 11 0.191687 98/100 NonOverlappingTemplate
13 12 9 9 6 10 10 10 10 11 0.955835 99/100 NonOverlappingTemplate
7 12 9 5 9 11 11 12 9 15 0.616305 99/100 NonOverlappingTemplate
11 10 12 12 7 2 13 10 13 10 0.350485 100/100 NonOverlappingTemplate
5 12 9 6 14 9 6 12 11 16 0.213309 100/100 NonOverlappingTemplate
6 17 14 9 13 13 2 9 7 10 0.042808 99/100 NonOverlappingTemplate
5 16 11 4 16 10 11 9 13 5 0.048716 98/100 NonOverlappingTemplate
11 5 9 11 5 16 8 13 12 10 0.304126 99/100 NonOverlappingTemplate
8 11 14 9 11 13 6 15 9 4 0.275709 99/100 NonOverlappingTemplate
13 12 7 12 8 13 6 10 7 12 0.657933 99/100 NonOverlappingTemplate
11 11 9 8 11 7 15 8 9 11 0.851383 96/100 NonOverlappingTemplate
6 12 8 6 9 18 9 9 12 11 0.262249 98/100 NonOverlappingTemplate
10 9 12 8 13 14 10 11 5 8 0.699313 99/100 NonOverlappingTemplate
15 9 12 6 7 11 11 12 8 9 0.678686 99/100 NonOverlappingTemplate
15 6 12 8 10 11 9 6 11 12 0.616305 97/100 OverlappingTemplate
7 11 9 11 8 10 11 16 10 7 0.719747 99/100 Universal
15 9 17 9 4 7 11 12 10 6 0.115387 98/100 ApproximateEntropy
11 8 9 9 8 3 13 8 8 11 0.460664 87/88 RandomExcursions
11 7 10 11 6 10 7 8 5 13 0.509162 88/88 RandomExcursions
9 6 10 8 11 10 8 11 9 6 0.875539 85/88 RandomExcursions
10 6 7 10 7 10 8 10 12 8 0.855534 87/88 RandomExcursions
10 12 12 5 6 7 8 8 11 9 0.585209 85/88 RandomExcursions
10 8 7 7 9 14 9 12 6 6 0.484646 87/88 RandomExcursions
15 4 12 8 9 11 6 9 10 4 0.105618 87/88 RandomExcursions
8 10 10 4 11 14 4 10 11 6 0.174249 87/88 RandomExcursions
9 10 9 6 7 8 7 9 11 12 0.855534 87/88 RandomExcursionsVariant
10 9 11 4 9 6 6 16 9 8 0.162606 87/88 RandomExcursionsVariant
11 8 8 8 11 7 8 13 9 5 0.663130 87/88 RandomExcursionsVariant
10 9 9 13 11 7 8 10 5 6 0.611108 87/88 RandomExcursionsVariant
11 5 12 12 13 8 8 4 10 5 0.162606 86/88 RandomExcursionsVariant
10 9 4 9 11 18 8 6 9 4 0.025193 86/88 RandomExcursionsVariant
11 3 10 7 8 9 10 8 10 12 0.534146 85/88 RandomExcursionsVariant
10 8 11 8 8 6 8 7 12 10 0.855534 86/88 RandomExcursionsVariant
8 11 13 8 11 9 8 7 4 9 0.559523 86/88 RandomExcursionsVariant
9 8 9 4 7 10 14 8 14 5 0.162606 85/88 RandomExcursionsVariant
13 6 11 6 8 4 6 11 12 11 0.213309 87/88 RandomExcursionsVariant
14 10 6 6 9 7 7 12 8 9 0.484646 87/88 RandomExcursionsVariant
14 7 7 10 7 12 12 8 6 5 0.275709 85/88 RandomExcursionsVariant
17 6 5 10 5 14 9 10 3 9 0.009706 86/88 RandomExcursionsVariant
16 8 7 6 10 8 5 8 7 13 0.141256 85/88 RandomExcursionsVariant
15 4 12 9 9 5 7 11 9 7 0.162606 85/88 RandomExcursionsVariant
12 10 9 10 12 7 6 3 8 11 0.350485 86/88 RandomExcursionsVariant
13 7 11 12 7 7 7 11 1 12 0.066882 86/88 RandomExcursionsVariant
10 9 7 14 14 11 10 7 12 6 0.616305 100/100 Serial
11 9 9 9 13 11 7 13 7 11 0.897763 100/100 Serial
9 6 11 12 11 8 13 10 11 9 0.924076 99/100 LinearComplexity
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
The minimum pass rate for each statistical test with the exception of the
random excursion (variant) test is approximately = 96 for a
sample size = 100 binary sequences.
The minimum pass rate for the random excursion (variant) test
is approximately = 84 for a sample size = 88 binary sequences.
For further guidelines construct a probability table using the MAPLE program
provided in the addendum section of the documentation.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
*.. an amazonian butterfly flaps his wings ..*