AM (Advanced Mathematics) Chat is a large-scale language model that integrates mathematical knowledge, advanced mathematics problems, and their solutions. This model utilizes a dataset that combines Math and advanced mathematics problems with their analyses. It is based on the InternLM2-Math-7B model and has been fine-tuned with xtuner, specifically designed to solve advanced mathematics problems.
If you find this project helpful, feel free to ⭐ Star it and help more people discover it!
[2024.08.09] We have released the Q8_0 quantization model AMchat-q8_0.gguf.
[2024.06.23] InternLM2-Math-Plus-20B model fine-tuning.
[2024.06.22] InternLM2-Math-Plus-1.8B model fine-tuning, open-sourced a small-scale dataset.
[2024.06.21] Updated the README. Performed fine-tuning on the InternLM2-Math-Plus-7B model.
[2024.03.24] 2024 InternLM Challenge (Spring Split) | Innovation and Creativity Award.
[2024.03.14] The model has been uploaded to HuggingFace.
[2024.03.08] The README was enhanced with the addition of a table of contents and a technical roadmap. Additionally, a new document, README_en-US.md, was created.
[2024.02.06] Docker deployment is now supported.
[2024.02.01] The first version of AMchat is deployed online at https://openxlab.org.cn/apps/detail/youngdon/AMchat 🚀
- Download the Model
From ModelScope
Refer to Downloading Models.
pip install modelscope
from modelscope.hub.snapshot_download import snapshot_download
model_dir = snapshot_download('yondong/AMchat', cache_dir='./')
From OpenXLab
Refer to Downloading Models.
pip install openxlab
from openxlab.model import download
download(model_repo='youngdon/AMchat',
model_name='AMchat', output='./')
- Local Deployment
git clone https://github.com/AXYZdong/AMchat.git
python start.py
- Docker Deployment
docker run -t -i --rm --gpus all -p 8501:8501 guidonsdocker/amchat:latest bash start.sh
- Clone this project
git clone https://github.com/AXYZdong/AMchat.git
cd AMchat
- Create a virtual environment
conda env create -f environment.yml
conda activate AMchat
pip install xtuner
- Prepare configuration files
# List all built-in configurations
xtuner list-cfg
mkdir -p /root/math/data
mkdir /root/math/config && cd /root/math/config
xtuner copy-cfg internlm2_chat_7b_qlora_oasst1_e3 .
- Model Download
mkdir -p /root/math/model
download.py
import torch
from modelscope import snapshot_download, AutoModel, AutoTokenizer
import os
model_dir = snapshot_download('Shanghai_AI_Laboratory/internlm2-math-7b', cache_dir='/root/math/model')
- Modify configuration files
A fine-tuned configuration file is already provided under the
config
directory, you can refer tointernlm_chat_7b_qlora_oasst1_e3_copy.py
. It can be used directly; make sure to adjust the paths forpretrained_model_name_or_path
anddata_path
accordingly.
cd /root/math/config
vim internlm_chat_7b_qlora_oasst1_e3_copy.py
# Change the model to local path
- pretrained_model_name_or_path = 'internlm/internlm-chat-7b'
+ pretrained_model_name_or_path = './internlm2-math-7b'
# Change the training dataset to local path
- data_path = 'timdettmers/openassistant-guanaco'
+ data_path = './data'
- Start fine-tuning
xtuner train /root/math/config2/internlm2_chat_7b_qlora_oasst1_e3_copy.py
- Convert PTH model to HuggingFace model
mkdir hf
export MKL_SERVICE_FORCE_INTEL=1
export MKL_THREADING_LAYER=GNU
xtuner convert pth_to_hf ./internlm2_chat_7b_qlora_oasst1_e3_copy.py \
./work_dirs/internlm2_chat_7b_qlora_oasst1_e3_copy/epoch_3.pth \
./hf
- Merge HuggingFace model into a large language model
# Original model parameter location
export NAME_OR_PATH_TO_LLM=/root/math/model/Shanghai_AI_Laboratory/internlm2-math-7b
# Hugging Face format parameter location
export NAME_OR_PATH_TO_ADAPTER=/root/math/config/hf
# Final merged parameter location
mkdir /root/math/config/work_dirs/hf_merge
export SAVE_PATH=/root/math/config/work_dirs/hf_merge
# Execute parameter merge
xtuner convert merge \
$NAME_OR_PATH_TO_LLM \
$NAME_OR_PATH_TO_ADAPTER \
$SAVE_PATH \
--max-shard-size 2GB
- Demo
streamlit run web_demo.py --server.address=0.0.0.0 --server.port 7860
To deploy AMchat on OpenXLab, simply fork this repository and then create a new project on OpenXLab. Associate the forked repository with the newly created project, and you will be able to deploy AMchat on OpenXLab.
- AMchat and InternLM2-Math-7B answer the same integral problem. AMchat answers correctly, while InternLM2-Math-7B answers incorrectly.
- First, install LMDeploy
pip install -U lmdeploy
- Then, convert the model to
turbomind
format
--dst-path: You can specify the storage location for the converted model.
lmdeploy convert internlm2-chat-7b Model address to be converted --dst-path Converted model address
- LMDeploy Chat
lmdeploy chat turbomind Converted turbomind model address
- Install OpenCompass
git clone https://github.com/open-compass/opencompass
cd opencompass
pip install -e .
- Download and unzip the dataset
cp /share/temp/datasets/OpenCompassData-core-20231110.zip /root/opencompass/
unzip OpenCompassData-core-20231110.zip
- Start evaluation!
python run.py \
--datasets math_gen \
--hf-path Model address \
--tokenizer-path Tokenizer address \
--tokenizer-kwargs padding_side='left' truncation='left' trust_remote_code=True \
--model-kwargs device_map='auto' trust_remote_code=True \
--max-seq-len 2048 \
--max-out-len 16 \
--batch-size 2 \
--num-gpus 1 \
--debug
W4 Quantization Evaluation
W4
Quantization
lmdeploy lite auto_awq Model address to be quantized --work-dir Quantized model address
- Convert to
TurbMind
lmdeploy convert internlm2-chat-7b Quantized model address --model-format awq --group-size 128 --dst-path Converted model address
- Evaluation
config
writing
from mmengine.config import read_base
from opencompass.models.turbomind import TurboMindModel
with read_base():
# choose a list of datasets
from .datasets.ceval.ceval_gen import ceval_datasets
# and output the results in a chosen format
# from .summarizers.medium import summarizer
datasets = [*ceval_datasets]
internlm2_chat_7b = dict(
type=TurboMindModel,
abbr='internlm2-chat-7b-turbomind',
path='Converted model address',
engine_config=dict(session_len=512,
max_batch_size=2,
rope_scaling_factor=1.0),
gen_config=dict(top_k=1,
top_p=0.8,
temperature=1.0,
max_new_tokens=100),
max_out_len=100,
max_seq_len=512,
batch_size=2,
concurrency=1,
# meta_template=internlm_meta_template,
run_cfg=dict(num_gpus=1, num_procs=1),
)
models = [internlm2_chat_7b]
- Start evaluation!
python run.py configs/eval_turbomind.py -w Specify the result save path
KV Cache Quantization Evaluation
- Convert to
TurbMind
lmdeploy convert internlm2-chat-7b Model path --dst-path Converted model path
- Calculate and obtain quantization parameters
# Calculate
lmdeploy lite calibrate Model path --calib-dataset 'ptb' --calib-samples 128 --calib-seqlen 2048 --work-dir Parameter save path
# Get quantization parameters
lmdeploy lite kv_qparams Parameter save path Converted model path/triton_models/weights/ --num-tp 1
- Change
quant_policy
to4
, change the path in the aboveconfig
- Start evaluation!
python run.py configs/eval_turbomind.py -w Result save path
- Result files and evaluation datasets can be obtained in the same directory results.
@misc{2024AMchat,
title={AMchat: A large language model integrating advanced math concepts, exercises, and solutions},
author={AMchat Contributors},
howpublished = {\url{https://github.com/AXYZdong/AMchat}},
year={2024}
}
This project is released under the Apache License 2.0. Please also adhere to the Licenses of models and datasets being used.