-
Notifications
You must be signed in to change notification settings - Fork 761
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
588 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,128 @@ | ||
import warnings | ||
warnings.filterwarnings("ignore") | ||
|
||
import pandas as pd | ||
import numpy as np | ||
from pypfopt.efficient_frontier import EfficientFrontier | ||
from pypfopt import risk_models | ||
from pypfopt.risk_models import CovarianceShrinkage | ||
from pypfopt import expected_returns | ||
from datetime import datetime | ||
from pandas.tseries.offsets import BDay | ||
|
||
from finrl.agents.stablebaselines3.models import DRLAgent | ||
from finrl.meta.env_portfolio_allocation.env_portfolio import StockPortfolioEnv | ||
from finrl.meta.preprocessor.preprocessors import FeatureEngineer | ||
from finrl.meta.preprocessor.preprocessors import data_split | ||
from finrl import config | ||
import pickle | ||
|
||
from rl_model import run_models | ||
|
||
df_price = pd.read_csv("/home/wenbiaolin/20221117/sp500_price_19960101_20221021.csv") | ||
|
||
df_price['adjcp'] = df_price['prccd'] / df_price['ajexdi'] | ||
|
||
df_price['date'] = df_price['datadate'] | ||
df_price['open'] = df_price['prcod'] | ||
df_price['close'] = df_price['prccd'] | ||
df_price['high'] = df_price['prchd'] | ||
df_price['low'] = df_price['prcld'] | ||
df_price['volume'] =df_price['cshtrd'] | ||
|
||
df = df_price[['date', 'open', 'close', 'high', 'low','adjcp','volume', 'gvkey']] | ||
|
||
df['tic'] = df_price['gvkey'] | ||
|
||
df['date'] = pd.to_datetime(df['date'], format='%Y%m%d') | ||
df['day'] = [x.weekday() for x in df['date']] | ||
df.drop_duplicates(['gvkey', 'date'], inplace=True) | ||
selected_stock = pd.read_csv("stock_selected_rf.csv") | ||
|
||
trade_date=selected_stock.trade_date.unique() | ||
|
||
with open('all_return_table.pickle', 'rb') as handle: | ||
all_return_table = pickle.load(handle) | ||
|
||
with open('all_stocks_info.pickle', 'rb') as handle: | ||
all_stocks_info = pickle.load(handle) | ||
|
||
|
||
df_dict = {'trade_date':[], 'gvkey':[], 'weights':[]} | ||
testing_window = pd.Timedelta(np.timedelta64(1,'Y')) | ||
max_rolling_window = pd.Timedelta(np.timedelta64(10, 'Y')) | ||
|
||
|
||
for idx in range(1, len(trade_date)): | ||
p1_alldata=all_stocks_info[trade_date[idx-1]] | ||
p1_alldata=p1_alldata.sort_values('gvkey') | ||
p1_alldata = p1_alldata.reset_index() | ||
del p1_alldata['index'] | ||
p1_stock = p1_alldata.gvkey | ||
|
||
earliest_date = pd.to_datetime(trade_date[idx-1]) - max_rolling_window | ||
|
||
df_ = df[df['tic'].isin(p1_stock) & (df['date'] >= earliest_date) & (df['date'] < trade_date[idx])] | ||
print(df_) | ||
fe = FeatureEngineer( | ||
use_technical_indicator=True, | ||
use_turbulence=False, | ||
user_defined_feature = False) | ||
|
||
df_ = fe.preprocess_data(df_) | ||
|
||
df_=df_.sort_values(['date','tic'],ignore_index=True) | ||
df_.index = df_.date.factorize()[0] | ||
|
||
cov_list = [] | ||
return_list = [] | ||
|
||
# look back is one year | ||
lookback=252 | ||
for i in range(lookback,len(df_.index.unique())): | ||
data_lookback = df_.loc[i-lookback:i,:] | ||
price_lookback=data_lookback.pivot_table(index = 'date',columns = 'tic', values = 'close') | ||
return_lookback = price_lookback.pct_change().dropna() | ||
return_list.append(return_lookback) | ||
|
||
covs = return_lookback.cov().values | ||
cov_list.append(covs) | ||
|
||
|
||
df_cov = pd.DataFrame({'date':df_.date.unique()[lookback:],'cov_list':cov_list,'return_list':return_list}) | ||
df_ = df_.merge(df_cov, on='date') | ||
df_ = df_.sort_values(['date','tic']).reset_index(drop=True) | ||
|
||
stock_dimension = len(df_.tic.unique()) | ||
state_space = stock_dimension | ||
env_kwargs = { | ||
"hmax": 100, | ||
"initial_amount": 1000000, | ||
"transaction_cost_pct": 0.001, | ||
"state_space": state_space, | ||
"stock_dim": stock_dimension, | ||
"tech_indicator_list": config.INDICATORS, | ||
"action_space": stock_dimension, | ||
"reward_scaling": 1e-4 | ||
|
||
} | ||
|
||
|
||
a2c_model,ppo_model,ddpg_model,td3_model,sac_model,best_model = run_models(df_, "date", pd.to_datetime(trade_date[idx-1]), env_kwargs,testing_window, max_rolling_window) | ||
|
||
trade = data_split(df_, pd.to_datetime(trade_date[idx-1]), pd.to_datetime(trade_date[idx])) | ||
e_trade_gym = StockPortfolioEnv(df = trade, **env_kwargs) | ||
df_daily_return, df_actions = DRLAgent.DRL_prediction( | ||
model=a2c_model, environment=e_trade_gym | ||
) | ||
|
||
|
||
for i in range(len(df_actions)): | ||
for j in df_actions.columns: | ||
df_dict['trade_date'].append(df_actions.index[i]) | ||
df_dict['gvkey'].append(j) | ||
df_dict['weights'].append(df_actions.loc[df_actions.index[i], j]) | ||
|
||
|
||
df_rl = pd.DataFrame(df_dict) | ||
df_rl.to_csv("drl_weight.csv") |
Oops, something went wrong.