-
Notifications
You must be signed in to change notification settings - Fork 12
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'dev' into Elasticsearch_Kibana
- Loading branch information
Showing
6 changed files
with
123 additions
and
35 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -214,6 +214,10 @@ def create_tasks_from_dataitems(items, project): | |
# Bulk create the tasks | ||
Task.objects.bulk_create(tasks) | ||
|
||
if "automatic_annotation_creation_mode" in project.metadata_json: | ||
create_automatic_annotations( | ||
tasks, project.metadata_json["automatic_annotation_creation_mode"] | ||
) | ||
if input_dataset_info["prediction"] is not None: | ||
user_object = User.objects.get(email="[email protected]") | ||
|
||
|
@@ -317,7 +321,7 @@ def create_parameters_for_task_creation( | |
sampling_parameters (dict): Parameters for sampling | ||
variable_parameters (dict): _description_ | ||
project_id (int): ID of the project object created in this iteration | ||
automatic_annotation_creation_mode: Creation mode for tasks | ||
""" | ||
|
||
filtered_items = filter_data_items( | ||
|
@@ -360,6 +364,10 @@ def create_parameters_for_task_creation( | |
# Create Tasks from Parameters | ||
tasks = create_tasks_from_dataitems(sampled_items, project) | ||
if automatic_annotation_creation_mode != None: | ||
project.metadata_json[ | ||
"automatic_annotation_creation_mode" | ||
] = automatic_annotation_creation_mode | ||
project.save() | ||
create_automatic_annotations(tasks, automatic_annotation_creation_mode) | ||
|
||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,43 +1,88 @@ | ||
def convert_result_to_chitralekha_format(result): | ||
result = sort_array_by_start(result) | ||
def create_memory(result): | ||
memory = {} | ||
for i in range(len(result)): | ||
key = result[i]["id"] | ||
if key not in memory: | ||
memory[key] = {"labels_dict_idx": -1, "text_dict_idx": -1} | ||
if result[i]["type"] == "labels": | ||
memory[key]["labels_dict_idx"] = i | ||
else: | ||
memory[key]["text_dict_idx"] = i | ||
return memory | ||
|
||
|
||
def convert_result_to_chitralekha_format(result, ann_id): | ||
memory = create_memory(result) | ||
modified_result = [] | ||
count = 1 | ||
for i in range(1, len(result), 2): | ||
label_dict = result[i - 1] | ||
text_dict = result[i] | ||
seen = set() | ||
for i in range(len(result)): | ||
if i in seen: | ||
continue | ||
labels_dict_idx, text_dict_idx = ( | ||
memory[result[i]["id"]]["labels_dict_idx"], | ||
memory[result[i]["id"]]["text_dict_idx"], | ||
) | ||
if labels_dict_idx == -1: | ||
text_dict = result[text_dict_idx] | ||
speaker_id = "Speaker 0" | ||
seen.add(text_dict_idx) | ||
elif text_dict_idx == -1: | ||
print( | ||
f"The data is corrupt for annotation id-{ann_id}, data id- {result[i]['id']}. " | ||
f"It does not contain a corresponding text dictionary." | ||
) | ||
continue | ||
else: | ||
label_dict = result[labels_dict_idx] | ||
text_dict = result[text_dict_idx] | ||
seen.add(labels_dict_idx) | ||
seen.add(text_dict_idx) | ||
speaker_id = label_dict["value"]["labels"][0] | ||
text = text_dict["value"]["text"][0] if text_dict["value"]["text"] else "" | ||
chitra_dict = { | ||
"text": text, | ||
"end_time": convert_fractional_time_to_formatted(text_dict["value"]["end"]), | ||
"speaker_id": label_dict["value"]["labels"][0], | ||
"start_time": convert_fractional_time_to_formatted( | ||
text_dict["value"]["start"] | ||
), | ||
"id": count, | ||
} | ||
try: | ||
chitra_dict = { | ||
"text": text, | ||
"end_time": convert_fractional_time_to_formatted( | ||
text_dict["value"]["end"], ann_id, text_dict["id"] | ||
), | ||
"speaker_id": speaker_id, | ||
"start_time": convert_fractional_time_to_formatted( | ||
text_dict["value"]["start"], ann_id, text_dict["id"] | ||
), | ||
"id": count, | ||
} | ||
except Exception: | ||
continue | ||
count += 1 | ||
|
||
modified_result.append(chitra_dict) | ||
|
||
modified_result = ( | ||
sort_result_by_start_time(modified_result) if len(modified_result) > 0 else [] | ||
) | ||
return modified_result | ||
|
||
|
||
def convert_fractional_time_to_formatted(minutes): | ||
total_seconds = minutes * 60 | ||
|
||
hours = int(total_seconds // 3600) | ||
total_seconds %= 3600 | ||
|
||
minutes = int(total_seconds // 60) | ||
seconds = total_seconds % 60 | ||
|
||
formatted_time = f"{hours:02d}:{minutes:02d}:{seconds:06.3f}" | ||
return formatted_time | ||
def convert_fractional_time_to_formatted(decimal_time, ann_id, data_id): | ||
if not ( | ||
isinstance(decimal_time, str) | ||
or isinstance(decimal_time, int) | ||
or isinstance(decimal_time, float) | ||
): | ||
print( | ||
f"The data is corrupt for annotation id-{ann_id}, data id- {data_id}. " | ||
f"Its start/end time are not stored as proper data type (int or float or string)." | ||
) | ||
decimal_time = float(decimal_time) | ||
hours = int(decimal_time // 60) | ||
remaining_minutes = int(decimal_time % 60) | ||
seconds_fraction = decimal_time - ((hours * 60) + remaining_minutes) | ||
seconds = int(seconds_fraction * 60) | ||
milliseconds = int((seconds_fraction * 60 - seconds) * 1000) | ||
|
||
return f"{hours:02d}:{remaining_minutes:02d}:{seconds:02d}.{milliseconds:03d}" | ||
|
||
def sort_array_by_start(array): | ||
def sort_key(entry): | ||
return entry["value"]["start"] | ||
|
||
sorted_array = sorted(array, key=sort_key) | ||
return sorted_array | ||
def sort_result_by_start_time(result): | ||
sorted_result = sorted(result, key=lambda x: x["start_time"]) | ||
return sorted_result |