Skip to content

Commit

Permalink
fix(dvae): dvae _embed permute mismatch (#403)
Browse files Browse the repository at this point in the history
when use_decoder=False
introduced in #383
maybe related to #400
  • Loading branch information
fumiama authored Jun 22, 2024
1 parent a41ce63 commit b4c3cff
Showing 1 changed file with 47 additions and 36 deletions.
83 changes: 47 additions & 36 deletions ChatTTS/model/dvae.py
Original file line number Diff line number Diff line change
@@ -1,16 +1,17 @@
import math
from vector_quantize_pytorch import GroupedResidualFSQ
from typing import List

import torch
import torch.nn as nn
import torch.nn.functional as F
from vector_quantize_pytorch import GroupedResidualFSQ

class ConvNeXtBlock(nn.Module):
def __init__(
self,
dim: int,
intermediate_dim: int,
kernel, dilation,
kernel: int, dilation: int,
layer_scale_init_value: float = 1e-6,
):
# ConvNeXt Block copied from Vocos.
Expand All @@ -32,25 +33,31 @@ def __init__(

def forward(self, x: torch.Tensor, cond = None) -> torch.Tensor:
residual = x
x = self.dwconv(x)
x = x.transpose(1, 2) # (B, C, T) -> (B, T, C)
x = self.norm(x)
x = self.pwconv1(x)
x = self.act(x)
x = self.pwconv2(x)

y = self.dwconv(x)
y.transpose_(1, 2) # (B, C, T) -> (B, T, C)
x = self.norm(y)
del y
y = self.pwconv1(x)
del x
x = self.act(y)
del y
y = self.pwconv2(x)
del x
if self.gamma is not None:
x = self.gamma * x
x = x.transpose(1, 2) # (B, T, C) -> (B, C, T)
y *= self.gamma
y.transpose_(1, 2) # (B, T, C) -> (B, C, T)

x = y + residual
del y

x = residual + x
return x



class GFSQ(nn.Module):

def __init__(self,
dim, levels, G, R, eps=1e-5, transpose = True
dim: int, levels: List[int], G: int, R: int, eps=1e-5, transpose = True
):
super(GFSQ, self).__init__()
self.quantizer = GroupedResidualFSQ(
Expand All @@ -67,19 +74,19 @@ def __init__(self,

def _embed(self, x: torch.Tensor):
if self.transpose:
x = x.transpose(1,2)
x.transpose_(1, 2)
"""
x = rearrange(
x, "b t (g r) -> g b t r", g = self.G, r = self.R,
)
"""
x.view(-1, self.G, self.R).permute(2, 0, 1, 3)
x = x.view(x.size(0), x.size(1), self.G, self.R).permute(2, 0, 1, 3)
feat = self.quantizer.get_output_from_indices(x)
return feat.transpose(1,2) if self.transpose else feat
return feat.transpose_(1,2) if self.transpose else feat

def forward(self, x,):
if self.transpose:
x = x.transpose(1,2)
x.transpose_(1,2)
feat, ind = self.quantizer(x)
"""
ind = rearrange(
Expand All @@ -92,19 +99,20 @@ def forward(self, x,):
embed_onehot = embed_onehot_tmp.to(x.dtype)
del embed_onehot_tmp
e_mean = torch.mean(embed_onehot, dim=[0,1])
e_mean = e_mean / (e_mean.sum(dim=1) + self.eps).unsqueeze(1)
# e_mean = e_mean / (e_mean.sum(dim=1) + self.eps).unsqueeze(1)
torch.div(e_mean, (e_mean.sum(dim=1) + self.eps).unsqueeze(1), out=e_mean)
perplexity = torch.exp(-torch.sum(e_mean * torch.log(e_mean + self.eps), dim=1))

return (
torch.zeros(perplexity.shape, dtype=x.dtype, device=x.device),
feat.transpose(1,2) if self.transpose else feat,
feat.transpose_(1,2) if self.transpose else feat,
perplexity,
None,
ind.transpose(1,2) if self.transpose else ind,
ind.transpose_(1,2) if self.transpose else ind,
)

class DVAEDecoder(nn.Module):
def __init__(self, idim, odim,
def __init__(self, idim: int, odim: int,
n_layer = 12, bn_dim = 64, hidden = 256,
kernel = 7, dilation = 2, up = False
):
Expand All @@ -121,14 +129,16 @@ def __init__(self, idim, odim,

def forward(self, input, conditioning=None):
# B, T, C
x = input.transpose(1, 2)
x = self.conv_in(x)
x = input.transpose_(1, 2)
y = self.conv_in(x)
del x
for f in self.decoder_block:
x = f(x, conditioning)

x = self.conv_out(x)
return x.transpose(1, 2)

y = f(y, conditioning)

x = self.conv_out(y)
del y
return x.transpose_(1, 2)


class DVAE(nn.Module):
def __init__(
Expand All @@ -144,20 +154,21 @@ def __init__(
else:
self.vq_layer = None

def forward(self, inp):
def forward(self, inp: torch.Tensor) -> torch.Tensor:

if self.vq_layer is not None:
vq_feats = self.vq_layer._embed(inp)
else:
vq_feats = inp.detach().clone()

vq_feats = vq_feats.view(
(vq_feats.size(0), 2, vq_feats.size(1)//2, vq_feats.size(2)),
).permute(0, 2, 3, 1).flatten(2)

vq_feats = vq_feats.transpose(1, 2)
dec_out = self.decoder(input=vq_feats)
dec_out = self.out_conv(dec_out.transpose(1, 2))
mel = dec_out * self.coef
dec_out = self.out_conv(
self.decoder(
input=vq_feats.transpose_(1, 2),
).transpose_(1, 2),
)

return mel
return torch.mul(dec_out, self.coef, out=dec_out)

0 comments on commit b4c3cff

Please sign in to comment.