forked from Orange-OpenSource/synthetic-tm-generator
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate.py
699 lines (608 loc) · 28.6 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
#!/usr/bin/env python
"""
Copyright 2018 Orange
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
from __future__ import print_function
import yaml
import json
import numpy as np
import sys
import random
import argparse
from subprocess import call
import tempfile
import re
import os
from pyomo.environ import *
from pyomo.opt import SolverFactory
import networkx as nx
from matplotlib.cm import autumn_r, hot_r
import matplotlib.pyplot as plt
"""Generates nb_nodes * (nb_nodes - 1) flow rates according to the Gravity model.
Args:
nb_nodes: Number of nodes in the network.
total_traffic: Total traffic going through the network, in Mbps.
Returns:
The flow rates as a matrix indexed by node numbers. Cells in the diagonal are null.
"""
def generate_tm(nb_nodes, total_traffic):
mean = 0.086
# rate = 1 / mean
tin = np.random.exponential(mean, nb_nodes)
tout = np.random.exponential(mean, nb_nodes)
tm = np.zeros((nb_nodes, nb_nodes))
sum_tin = np.sum(tin)
sum_tout = np.sum(tout)
for i in range(nb_nodes):
for j in range(nb_nodes):
if i != j:
tm[i][j] = total_traffic * tin[i] / sum_tin * tout[j] / sum_tout
return tm
"""Defines the variables, the constraints, and the objective for use by Pyomo.
Args:
nodes: List of node IDs.
links: A dictionary of link capacities (in Mbps) indexed by link's edges.
od_pairs: List of OD pair (as tuples).
flow_rates: List of flow rates, in Mbps.
Returns:
The Pyomo model.
"""
def define_model(nodes, links, od_pairs, flow_rates):
L = range(len(flow_rates))
model = ConcreteModel()
model.mapping = Var(od_pairs, L, within=Binary)
model.pair_rates = Var(od_pairs, within=NonNegativeReals)
model.link_rates = Var(links.keys(), od_pairs, within=NonNegativeReals)
model.z = Var(within=NonNegativeReals)
def max_link_load(model):
return model.z
model.obj = Objective(rule=max_link_load, sense=minimize)
def single_rate_per_pair(model, k1, k2):
return sum(model.mapping[k1, k2, l] for l in L) == 1
model.nine = Constraint(od_pairs, rule=single_rate_per_pair)
def single_pair_per_rate(model, l):
return sum(model.mapping[k1, k2, l] for (k1, k2) in od_pairs) == 1
model.ten = Constraint(L, rule=single_pair_per_rate)
def compute_pair_rates(model, k1, k2):
return model.pair_rates[k1, k2] == sum(model.mapping[k1, k2, l] * flow_rates[l] for l in L)
model.eleven = Constraint(od_pairs, rule=compute_pair_rates)
def flow_conservation(model, u_, k1, k2):
if u_ == k1:
return sum(model.link_rates[v, u, k1, k2] for (v, u) in links.keys() if u_ == u) - sum(model.link_rates[u, v, k1, k2] for (u, v) in links.keys() if u_ == u) == -model.pair_rates[k1, k2]
if u_ == k2:
return sum(model.link_rates[v, u, k1, k2] for (v, u) in links.keys() if u_ == u) - sum(model.link_rates[u, v, k1, k2] for (u, v) in links.keys() if u_ == u) == model.pair_rates[k1, k2]
return sum(model.link_rates[v, u, k1, k2] for (v, u) in links.keys() if u_ == u) - sum(model.link_rates[u, v, k1, k2] for (u, v) in links.keys() if u_ == u) == 0
model.twelve = Constraint(nodes, od_pairs, rule=flow_conservation)
def compute_max_link_load(model, u, v):
return model.z >= (sum(model.link_rates[u, v, k1, k2] for (k1, k2) in od_pairs) / links[u, v])
model.thirteen = Constraint(links.keys(), rule=compute_max_link_load)
return model
"""Assigns flow rates to the given network using the ILP method.
Uses GLPK as the solver and Pyomo as the Python interface.
Args:
data: The dictionary containing the topology and the node capacities.
tm: The matrix of generated flow rates.
mipgap: The mipgap argument for the GLPK solver.
Returns:
0
"""
def assign_flow_rates_ilp(data, tm, mipgap):
nodes = [node['id'] for node in data['nodes']]
links = {}
for link in data['links']:
links[(link['source'], link['destination'])] = link['capacity']
od_pairs = []
flow_rates = []
for i in range(1, len(nodes) + 1):
for j in range(1, len(nodes) + 1):
if i != j:
flow_rates.append(int(round(tm[i - 1, j - 1])))
od_pairs.append((i, j))
model = define_model(nodes, links, od_pairs, flow_rates)
solver = SolverFactory('glpk')
solver.set_options("mipgap=%f" % mipgap)
results = solver.solve(model)
print(results)
if str(results['Solver'][0]['Termination condition']) == 'infeasible':
return None
model.solutions.load_from(results)
for link in data['links']:
for (s, d) in od_pairs:
link['legit_load'] += model.link_rates[link['source'], link['destination'], s, d].value
return 0
"""Assigns flow rates to the given network using the ILP method.
Uses GLPK as the solver but without relying on Pyomo as the Python interface.
Instead, it generates the model file with all the parameters and directly calls glpsol.
Args:
data: The dictionary containing the topology and the node capacities.
tm: The matrix of generated flow rates.
mipgap: The mipgap argument for the GLPK solver.
Returns:
The objective value, the maximum link load.
"""
def assign_flow_rates_ilp_glpk(data, tm, mipgap):
# Generate model file from template GMPL program:
nb_od_pairs = 1
flow_rates_str = ""
od_pairs_str = ""
for i in range(1, len(nodes) + 1):
for j in range(1, len(nodes) + 1):
if i != j:
flow_rates_str += "\n %d %f" % (nb_od_pairs, tm[i - 1, j - 1])
nb_od_pairs += 1
od_pairs_str += "\n %d %d" % (i, j)
nb_od_pairs -= 1
links_str = ""
link_capacities_str = ""
nb_links = 0
for link in data['links']:
links_str += "\n %d %d" % (link['source'], link['destination'])
link_capacities_str += "\n %d %d %d" % (link['source'], link['destination'], link['capacity'])
nb_links += 1
with open("template.mod", 'r') as fh:
mip_program = fh.read()
mip_program = mip_program.replace("NB_NODES", str(len(data['nodes'])))
mip_program = mip_program.replace("NB_OD_PAIRS", str(nb_od_pairs))
mip_program = mip_program.replace("OD_PAIRS", od_pairs_str)
mip_program = mip_program.replace("LINKS", links_str)
mip_program = mip_program.replace("FLOW_RATES", flow_rates_str)
mip_program = mip_program.replace("LINK_CAPABILITIES", link_capacities_str)
_, tmp_model_file = tempfile.mkstemp()
with open(tmp_model_file, 'w') as fh:
fh.write(mip_program)
# Run GLPK
_, tmp_output_file = tempfile.mkstemp()
call(["glpsol", "--mipgap", str(mipgap), "--model", tmp_model_file, "-o", tmp_output_file])
# Retrieve variables' values:
nb_constraints = 1 + 3 * nb_od_pairs + nb_od_pairs * len(data['nodes']) + nb_links
nb_mapping_vars = nb_od_pairs * nb_od_pairs
nb_pair_rate_vars = nb_od_pairs
link_rates = {}
objective = None
with open(tmp_output_file, 'r') as fh:
regexp = re.compile(r'^\s+\d+\s+link_rates\[(\d+),(\d+),\d+,\d+\]$')
val_line = False
for line in fh:
if val_line:
if (src, dst) in link_rates:
link_rates[src, dst] += float(line.split()[0])
else:
link_rates[src, dst] = float(line.split()[0])
val_line = False
else:
m = regexp.match(line)
if m:
src = int(m.group(1))
dst = int(m.group(2))
val_line = True
elif "Objective: max_load" in line:
objective = float(line.split()[3])
if nb_links != len(link_rates):
print("Error: The number of link_rates variables retrieved from the glpsol output doesn't match the number of links. %d %d", (nb_links, len(link_rates)), file=sys.stderr)
sys.exit(1)
for link in data['links']:
link['legit_load'] = link_rates[link['source'], link['destination']]
os.remove(tmp_model_file)
os.remove(tmp_output_file)
return objective
"""Routes flows between OD pairs on the network according to all_paths.
Args:
links: Dictionary of links, with the legitimate load value indexed under 'legit_load', indexed by link's edges.
all_paths: Dictionary of tuples' lists, indexed by OD pair's edges. Tuples contain a path as a list of nodes to traverse and a weight for that path.
od_pairs: List of OD pairs (as tuples).
flow_rates: List of flow rates. Flow rates i will be routed on OD pair i.
"""
def route_flows_multipaths(links, all_paths, od_pairs, flow_rates):
for i in xrange(len(od_pairs)):
(src, dst) = od_pairs[i]
paths = all_paths[src, dst]
for (path, weight) in paths:
flow_rate = flow_rates[i] * weight
for j in range(len(path) - 1):
links[path[j], path[j + 1]]['legit_load'] += flow_rate
"""Computes the capacity of a given path.
Args:
links: Dictionary of links, with the legitimate load value indexed under 'capacity', indexed by link's edges.
path: Path, as a list of nodes.
Returns:
The lowest link capacity on the path.
"""
def path_capacity(links, path):
min_cap = float("inf")
for i in range(len(path) - 1):
min_cap = min(min_cap, links[path[i], path[i + 1]]['capacity'])
return min_cap
"""Assigns flow rates to the given network using the heuristic method.
Args:
data: The dictionary containing the topology and the node capacities.
tm: The matrix of generated flow rates.
mipgap: Not used. For compatibility with other methods' functions.
Returns:
The maximum link load.
"""
def assign_flow_rates_heuristic(data, tm, mipgap):
flow_rates = []
od_pairs = []
for i in range(1, len(nodes) + 1):
for j in range(1, len(nodes) + 1):
if i != j:
flow_rates.append(tm[i - 1, j - 1])
od_pairs.append((i, j))
# Compute multipath routing between all node pairs:
links = {}
for link in data['links']:
links[link['source'], link['destination']] = {'legit_load': 0, 'capacity': link['capacity']}
G = nx.DiGraph([(link['source'], link['destination']) for link in data['links']])
all_paths = {}
for (src, dst) in od_pairs:
all_paths[src, dst] = []
try:
paths = [p for p in nx.all_shortest_paths(G, source=src, target=dst)]
except nx.exception.NetworkXNoPath:
print("Error: No path found between %d and %d." % (src, dst), file=sys.stderr)
sys.exit(1)
max_flow = 0
path_capacities = []
for path in paths:
capacity = path_capacity(links, path)
path_capacities.append(capacity)
max_flow += capacity
for i in range(len(paths)):
weight = path_capacities[i] * 1.0 / max_flow
all_paths[src, dst].append((paths[i], weight))
# Compute sort information on OD pairs:
node_infos = {}
for node in data['nodes']:
node_infos[node['id']] = {'fanout': 0, 'fanin': 0, 'connectivity': 0, 'nb_paths': 0}
for link in data['links']:
node_infos[link['destination']]['connectivity'] += 1
node_infos[link['destination']]['fanin'] += link['capacity']
node_infos[link['source']]['connectivity'] += 1
node_infos[link['source']]['fanout'] += link['capacity']
for (src, dst) in all_paths:
for (path, _) in all_paths[src, dst]:
for node in path[1:-1]:
node_infos[node]['nb_paths'] += 1
od_pair_infos = {}
for (src, dst) in od_pairs:
src_infos = node_infos[src]
dst_infos = node_infos[dst]
m1 = min(src_infos['fanout'], dst_infos['fanin'])
m2 = min(src_infos['connectivity'], dst_infos['connectivity'])
if src_infos['nb_paths'] == dst_infos['nb_paths'] == 0:
m3 = float("Inf")
else:
m3 = 1.0 / max(src_infos['nb_paths'], dst_infos['nb_paths'])
od_pair_infos[(src, dst)] = {'m1': m1, 'm2': m2, 'm3': m3}
# Sort OD pairs:
def make_comparator(od_pair_infos):
def compare(od1, od2):
pair1_infos = od_pair_infos[od1]
pair2_infos = od_pair_infos[od2]
if pair1_infos['m1'] == pair2_infos['m1']:
if pair1_infos['m2'] == pair2_infos['m2']:
if pair1_infos['m3'] == pair2_infos['m3']:
return 0
elif pair1_infos['m3'] > pair2_infos['m3']:
return 1
else:
return -1
elif pair1_infos['m2'] > pair2_infos['m2']:
return 1
else:
return -1
elif pair1_infos['m1'] > pair2_infos['m1']:
return 1
else:
return -1
return compare
flow_rates.sort(reverse=True)
od_pairs = sorted(od_pairs, cmp=make_comparator(od_pair_infos), reverse=True)
# Route flows between OD pairs:
route_flows_multipaths(links, all_paths, od_pairs, flow_rates)
# Write link loads to YAML and compute objective value:
objective = 0
for link in data['links']:
link['legit_load'] = links[link['source'], link['destination']]['legit_load']
max_link_load = link['legit_load'] / link['capacity']
if max_link_load > objective:
objective = max_link_load
return objective
"""Displays the graph of the network with legitimate loads on edges, in a new window.
Args:
data: The dictionary containing the topology and the node capacities.
"""
def display_graph(data):
links = [(link['source'], link['destination']) for link in data['links']]
edge_labels = {}
for link in data['links']:
if link['legit_load'] > 0:
edge_labels[(link['source'], link['destination'])] = link['legit_load']
G = nx.DiGraph(links)
pos = nx.spring_layout(G)
nx.draw(G, pos=pos, with_labels=True, arrows=False)
nx.draw_networkx_edge_labels(G, pos=pos, edge_labels=edge_labels)
plt.show()
"""Computes the mean load factor (load / capacity) of links in the network.
Args:
data: The dictionary containing the topology and the node capacities.
Returns:
The mean link load factor.
"""
def compute_mean_link_load(data):
tot_link_load = 0
nb_links = 0
for link in data['links']:
tot_link_load += link['legit_load'] / link['capacity']
nb_links += 1
return tot_link_load / nb_links
"""Scales down the legitimate loads of links in the network by factor.
Args:
data: The dictionary containing the topology and the node capacities.
factor: The value link loads are divided by.
"""
def scale_down_tm(data, factor):
for link in data['links']:
link['legit_load'] /= factor
"""Generates node and link items for the output YAML file.
For each link (u, v), a back link (v, u) of equal capacity is created.
Link capacities are all adapted according to the max_link_capacity.
Args:
data: The dictionary containing the output information.
template: The template information, directly from the YAML file (dictionary).
max_node_class: The maximum node class to include in the output network. Used to restrict the network's size.
max_link_capacity: The capacity of the largest links.
Returns:
The list of selected nodes, according to the max_node_class argument.
"""
def generate_topology(data, template, max_node_class, max_link_capacity):
classes = {}
for class_ in template['classes']:
classes[class_['name']] = class_
# Collects neighbors for each node:
all_neighbors = {}
for node in template['nodes']:
neighbors = []
all_neighbors[node['id']] = neighbors
for link in template['links']:
if link['destination'] == node['id']:
neighbors.append((link['source'], link['capacity']))
elif link['source'] == node['id']:
neighbors.append((link['destination'], link['capacity']))
neighbors.sort(key=lambda tup: tup[0])
# Collects links:
links = {}
for link in template['links']:
if link['source'] < link['destination']:
links[(link['source'], link['destination'])] = link['capacity']
else:
links[(link['destination'], link['source'])] = link['capacity']
# Selects the nodes according to the max. node class wanted:
nodes = []
i = 0
for node in template['nodes']:
if node['class'] <= max_node_class:
class_ = classes[node['class']]
new_node = {'id': node['id'], 'cpus': class_['cpus'], 'memory': class_['memory']}
data['nodes'].append(new_node)
nodes.append(node['id'])
else:
# Removed node, need to bridge the neighbors:
nb_neighbors = len(all_neighbors[node['id']])
if nb_neighbors >= 2 and nb_neighbors <= 3:
for i in range(nb_neighbors):
neighbor1 = all_neighbors[node['id']][i]
neighbor2 = all_neighbors[node['id']][(i + 1) % nb_neighbors]
if neighbor1[0] == neighbor2[0]:
# Only allow edges between different nodes.
continue
# Retrieves the max capacity between the already existing link, if any, and the new:
capacity = max(neighbor1[1], neighbor2[1])
if (neighbor1[0], neighbor2[0]) in links:
link2_capacity = links[(neighbor1[0], neighbor2[0])]
if link2_capacity > capacity:
capacity = link2_capacity
else:
continue
link = {'source': neighbor1[0], 'destination': neighbor2[0], 'capacity': capacity}
template['links'].insert(0, link)
# Removes the current node from neighbor lists:
all_neighbors[link['source']] = [(u, cap) for (u, cap) in all_neighbors[link['source']] if u != node['id']]
all_neighbors[link['destination']] = [(u, cap) for (u, cap) in all_neighbors[link['destination']] if u != node['id']]
# Adds the new neighbors:
all_neighbors[link['source']].append((link['destination'], link['capacity']))
all_neighbors[link['destination']].append((link['source'], link['capacity']))
if nb_neighbors == 2:
# If we continue we'll add a back-edge between the two neighbors.
break
i += 1
# Selects the links according to the remaining nodes:
cur_max_link_capacity = max(template['links'], key=lambda link: link['capacity'])['capacity']
link_size_factor = max_link_capacity / cur_max_link_capacity
for link in template['links']:
if link['source'] in nodes and link['destination'] in nodes:
already_added = sum([l['source'] == link['source'] and l['destination'] == link['destination'] for l in data['links']])
if already_added == 0:
link['capacity'] = link['capacity'] * link_size_factor
data['links'].append(link)
back_link = dict(link)
back_link['source'] = link['destination']
back_link['destination'] = link['source']
data['links'].append(back_link)
return nodes
"""Generates the legitimate link loads according to the Gravity model.
Displays a few info messages on stdout.
Args:
data: The dictionary containing the topology and the node capacities.
nodes: The list of node IDs.
mipgap: The mipgap argument for the GLPK solver.
total_traffic:
target_mean_link_load:
flow_assign_method: The method to use to map generated flow rates into the network. One of 'heuristic', 'ilp', or 'ilp-glpk'.
"""
def generate_link_loads(data, nodes, mipgap, total_traffic, target_mean_link_load, flow_assign_method):
methods = {'heuristic': assign_flow_rates_heuristic, 'ilp': assign_flow_rates_ilp, 'ilp-glpk': assign_flow_rates_ilp_glpk}
tm = generate_tm(len(nodes), total_traffic)
objective = methods[flow_assign_method](data, tm, mipgap)
if objective > 1:
print("Scaling down TM by %f to reach feasible routing." % objective, file=sys.stderr)
scale_down_tm(data, objective)
mean_link_load = compute_mean_link_load(data)
factor = mean_link_load / target_mean_link_load
if factor < 1:
print("Mean link load is at %f." % mean_link_load, file=sys.stderr)
else:
print("Scaling down TM by %f to reach %f mean link load." % (factor, args.mean_link_load), file=sys.stderr)
scale_down_tm(data, factor)
"""Generates attacks between the given attackers and targets.
Attack loads follow an exponential distribution.
Attackers and targets are selected randomly.
Args:
data: The dictionary containing the topology and the node capacities.
nodes: The list of node IDs.
nb_attackers: The number attackers. 0 for all nodes.
nb_targets: The number of targets.
mean_attack_load: Mean attack load, in Mbps.
"""
def generate_attacks(data, nodes, nb_attackers, nb_targets, mean_attack_load):
random.shuffle(nodes)
if nb_attackers == 0:
attackers = nodes
else:
attackers = nodes[0:nb_attackers]
targets = nodes[0:nb_targets]
for attacker in attackers:
target = targets[random.randint(0, nb_targets - 1)]
load = round(np.random.exponential(mean_attack_load))
attack = {'source': attacker, 'destination': target, 'load': load}
data['attacks'].append(attack)
"""Rounds values for the legitimate loads on links.
Args:
data: The dictionary containing the topology and the node capacities.
"""
def round_link_loads(data):
for link in data['links']:
link['legit_load'] = round(link['legit_load'])
"""Format all output information into text format
Args:
data: The dictionary containing the topology and the node capacities.
Returns:
The text to display or write to file.
"""
def format_text(data):
nb_nodes = len(data['nodes'])
adjacency_matrix = [[0 for x in range(nb_nodes)] for y in range(nb_nodes)]
legit_load_matrix = [[0 for x in range(nb_nodes)] for y in range(nb_nodes)]
for link in data['links']:
adjacency_matrix[link['source'] - 1][link['destination'] - 1] = link['capacity']
legit_load_matrix[link['source'] - 1][link['destination'] - 1] = link['legit_load']
adjacency_matrix_text = "["
legit_load_matrix_text = "["
for i in range(nb_nodes - 1):
adjacency_matrix_text += "%s\n " % json.dumps(adjacency_matrix[i])
legit_load_matrix_text += "%s\n " % json.dumps(legit_load_matrix[i])
adjacency_matrix_text += "%s]" % json.dumps(adjacency_matrix[nb_nodes - 1])
legit_load_matrix_text += "%s]" % json.dumps(legit_load_matrix[nb_nodes - 1])
text = "%s\n\n%s" % (adjacency_matrix_text, legit_load_matrix_text)
resource_matrix = [[0 for x in range(nb_nodes)] for y in range(2)]
for node in data['nodes']:
resource_matrix[0][node['id'] - 1] = node['cpus']
resource_matrix[1][node['id'] - 1] = node['memory']
resource_matrix_text = "[%s,\n" % json.dumps(resource_matrix[0])
resource_matrix_text += " %s]" % json.dumps(resource_matrix[1])
text = "%s\n\n%s" % (text, resource_matrix_text)
nb_attacks = len(data['attacks'])
attack_source_vector = [0 for x in range(nb_attacks)]
attack_dest_vector = [0 for x in range(nb_attacks)]
attack_load_vector = [0 for x in range(nb_attacks)]
i = 0
for attack in data['attacks']:
attack_source_vector[i] = attack['source']
attack_dest_vector[i] = attack['destination']
attack_load_vector[i] = attack['load']
i += 1
text = "%s\n\n%s\n%s\n%s" % (text, json.dumps(attack_source_vector), json.dumps(attack_dest_vector), json.dumps(attack_load_vector))
nb_vnfs = len(data['vnfs'])
vnf_capacity_vector = [0 for x in range(nb_vnfs)]
vnf_cost_vector = [0 for x in range(nb_vnfs)]
vnf_resource_matrix = [[0 for x in range(nb_vnfs)] for y in range(2)]
i = 0
for vnf in data['vnfs']:
vnf_capacity_vector[i] = vnf['capacity']
vnf_cost_vector[i] = vnf['cost']
vnf_resource_matrix[0][i] = vnf['cpus']
vnf_resource_matrix[1][i] = vnf['memory']
i += 1
vnf_resource_matrix_text = "[%s,\n" % json.dumps(resource_matrix[0])
vnf_resource_matrix_text += " %s]" % json.dumps(resource_matrix[1])
vnf_capacity_vector_text = json.dumps(vnf_capacity_vector)
vnf_cost_vector_text = json.dumps(vnf_cost_vector)
text = "%s\n\n%s\n\n%s\n\n%s" % (text, vnf_resource_matrix_text, vnf_capacity_vector_text, vnf_cost_vector_text)
return text
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Generate a set of inputs for the VNF placement problem.')
parser.add_argument('template_file',
help='Path to the template file to use.')
parser.add_argument('output_file',
help='Path to the output file to use. - for stdout.')
parser.add_argument('--method-flow-assign', choices=['ilp', 'ilp-glpk', 'heuristic'], default='heuristic',
help='Method for the assignment of flow rates to the network. ilp an dilp-glpk use the'
' same solver, except ilp-glpk is tailored for GLPK and has a lower memory footprint. Defaults to %(default)s.')
parser.add_argument('--max-node-class', type=int, default=3,
help='The maximum class of nodes to select (1, 2, or 3). Defaults to %(default)s to select all nodes from the template.')
parser.add_argument('--max-link-capacity', type=int, default=100000,
help='The capacity assigned to the largest links, in Mbps. Defaults to 100 Gbps.')
parser.add_argument('--total-traffic', type=int, default=1000000,
help='Total traffic going through the network, in Mbps. Used by the gravity model. Defaults to 1 Tbps.')
parser.add_argument('nb_attackers', type=int,
help='Number of nodes from which the attacking flows arrive. 0 for all nodes.')
parser.add_argument('nb_targets', type=int, help='Number of targets for the DDoS attacks.')
parser.add_argument('--mean-attack-load', type=int,
default=10000, help='Mean attack load, in Mbps. Used to generate the attack loads. Defaults to 10 Gbps.')
parser.add_argument('--mipgap', type=float, default=0.2,
help='mipgap parameter for GLPK. Defaults to %(default)s.')
parser.add_argument('--mean-link-load', type=float, default=0.5, help='Mean link load. Defaults to %(default)s.')
parser.add_argument('--display-network', action='store_true', help='Display the network graph with legitimate link loads in a new window.')
parser.add_argument('--yaml', action='store_true', default=False, help='Output a YAML document.')
args = parser.parse_args()
with open(args.template_file, 'r') as fh:
try:
template = yaml.load(fh)
except yaml.YAMLError as e:
print(e, file=sys.stderr)
sys.exit(1)
data = {'nodes': [], 'links': [], 'attacks': [], 'vnfs': template['vnfs']}
nodes = generate_topology(data, template, args.max_node_class, args.max_link_capacity)
if args.nb_attackers > len(nodes):
print("Error: More attackers required than there are nodes (%d) in the network." % len(nodes), file=sys.stderr)
sys.exit(1)
if args.nb_targets > len(nodes):
print("Error: More targets required than there are nodes (%d) in the network." % len(nodes), file=sys.stderr)
sys.exit(1)
generate_link_loads(data, nodes, args.mipgap, args.total_traffic, args.mean_link_load, args.method_flow_assign)
generate_attacks(data, nodes, args.nb_attackers, args.nb_targets, args.mean_attack_load)
round_link_loads(data)
if args.yaml:
if args.output_file == '-':
print(yaml.dump(data, default_flow_style=False))
else:
with open(args.output_file, 'w') as fh:
yaml.dump(data, fh, default_flow_style=False)
else:
text = format_text(data)
if args.output_file == '-':
print(text)
else:
with open(args.output_file, 'w') as fh:
fh.write(text)
if args.display_network:
display_graph(data)