-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathcog_create_dataset.py
312 lines (279 loc) · 10.4 KB
/
cog_create_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
#!/usr/bin/env python3
from __future__ import unicode_literals
import yt_dlp
import ffmpeg
import os
import shutil
import sys
import subprocess
import numpy as np
import librosa
import soundfile
Mode = "Splitting" # @param ["Separate", "Splitting"]
dataset = "Youtube" # @param ["Youtube", "Drive"]
url = "https://www.youtube.com/watch?v=DEqXNfs_HhY" # @param {type:"string"}
drive_path = "" # @param {type:"string"}
AUDIO_NAME = "test" # @param {type:"string"}
folders = [
f"youtubeaudio/{AUDIO_NAME}",
f"drive/MyDrive/audio/{AUDIO_NAME}",
f"dataset/{AUDIO_NAME}",
f"drive/MyDrive/dataset/{AUDIO_NAME}"
]
for folder in folders:
try:
shutil.rmtree(folder)
except FileNotFoundError:
pass
# Install Library for Youtube WAV Download
if dataset == "Drive":
print("Dataset is set to Drive. Skipping this section")
elif dataset == "Youtube":
pass
# Download Youtube WAV
if dataset == "Drive":
print("Dataset is set to Drive. Skipping this section")
elif dataset == "Youtube":
ydl_opts = {
"format": "bestaudio/best",
# 'outtmpl': 'output.%(ext)s',
"postprocessors": [
{
"key": "FFmpegExtractAudio",
"preferredcodec": "wav",
}
],
"outtmpl": f"youtubeaudio/{AUDIO_NAME}", # this is where you can edit how you'd like the filenames to be formatted
}
def download_from_url(url):
ydl.download([url])
# stream = ffmpeg.input('output.m4a')
# stream = ffmpeg.output(stream, 'output.wav')
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
download_from_url(url)
# Separate Vocal and Instrument/Noise using Demucs
AUDIO_INPUT = f"youtubeaudio/{AUDIO_NAME}.wav"
if dataset == "Drive":
command = f"demucs --two-stems=vocals {drive_path}"
elif dataset == "Youtube":
command = f"demucs --two-stems=vocals {AUDIO_INPUT}"
result = subprocess.run(command.split(), stdout=subprocess.PIPE)
print(result.stdout.decode())
# Create directory
os.makedirs(f"drive/MyDrive/audio/{AUDIO_NAME}", exist_ok=True)
# Copy files
for file in os.listdir(f"separated/htdemucs/{AUDIO_NAME}"):
shutil.copy(
f"separated/htdemucs/{AUDIO_NAME}/{file}", f"drive/MyDrive/audio/{AUDIO_NAME}"
)
# Copy files if dataset is "Youtube"
if dataset == "Youtube":
shutil.copy(f"youtubeaudio/{AUDIO_NAME}.wav", f"drive/MyDrive/audio/{AUDIO_NAME}")
# Split The Audio into Smaller Duration Before Training
if Mode == "Separate":
print("Mode is set to Separate. Skipping this section")
elif Mode == "Splitting":
# !pip install numpy
# !pip install librosa
# !pip install soundfile
os.makedirs(f"dataset/{AUDIO_NAME}", exist_ok=True)
# This function is obtained from librosa.
def get_rms(
y,
*,
frame_length=2048,
hop_length=512,
pad_mode="constant",
):
padding = (int(frame_length // 2), int(frame_length // 2))
y = np.pad(y, padding, mode=pad_mode)
axis = -1
# put our new within-frame axis at the end for now
out_strides = y.strides + tuple([y.strides[axis]])
# Reduce the shape on the framing axis
x_shape_trimmed = list(y.shape)
x_shape_trimmed[axis] -= frame_length - 1
out_shape = tuple(x_shape_trimmed) + tuple([frame_length])
xw = np.lib.stride_tricks.as_strided(y, shape=out_shape, strides=out_strides)
if axis < 0:
target_axis = axis - 1
else:
target_axis = axis + 1
xw = np.moveaxis(xw, -1, target_axis)
# Downsample along the target axis
slices = [slice(None)] * xw.ndim
slices[axis] = slice(0, None, hop_length)
x = xw[tuple(slices)]
# Calculate power
power = np.mean(np.abs(x) ** 2, axis=-2, keepdims=True)
return np.sqrt(power)
class Slicer:
def __init__(
self,
sr: int,
threshold: float = -40.0,
min_length: int = 5000,
min_interval: int = 300,
hop_size: int = 20,
max_sil_kept: int = 5000,
):
if not min_length >= min_interval >= hop_size:
raise ValueError(
"The following condition must be satisfied: min_length >= min_interval >= hop_size"
)
if not max_sil_kept >= hop_size:
raise ValueError(
"The following condition must be satisfied: max_sil_kept >= hop_size"
)
min_interval = sr * min_interval / 1000
self.threshold = 10 ** (threshold / 20.0)
self.hop_size = round(sr * hop_size / 1000)
self.win_size = min(round(min_interval), 4 * self.hop_size)
self.min_length = round(sr * min_length / 1000 / self.hop_size)
self.min_interval = round(min_interval / self.hop_size)
self.max_sil_kept = round(sr * max_sil_kept / 1000 / self.hop_size)
def _apply_slice(self, waveform, begin, end):
if len(waveform.shape) > 1:
return waveform[
:, begin * self.hop_size : min(waveform.shape[1], end * self.hop_size)
]
else:
return waveform[
begin * self.hop_size : min(waveform.shape[0], end * self.hop_size)
]
def slice(self, waveform):
if len(waveform.shape) > 1:
samples = waveform.mean(axis=0)
else:
samples = waveform
if samples.shape[0] <= self.min_length:
return [waveform]
rms_list = get_rms(
y=samples, frame_length=self.win_size, hop_length=self.hop_size
).squeeze(0)
sil_tags = []
silence_start = None
clip_start = 0
for i, rms in enumerate(rms_list):
# Keep looping while frame is silent.
if rms < self.threshold:
# Record start of silent frames.
if silence_start is None:
silence_start = i
continue
# Keep looping while frame is not silent and silence start has not been recorded.
if silence_start is None:
continue
# Clear recorded silence start if interval is not enough or clip is too short
is_leading_silence = silence_start == 0 and i > self.max_sil_kept
need_slice_middle = (
i - silence_start >= self.min_interval
and i - clip_start >= self.min_length
)
if not is_leading_silence and not need_slice_middle:
silence_start = None
continue
# Need slicing. Record the range of silent frames to be removed.
if i - silence_start <= self.max_sil_kept:
pos = rms_list[silence_start : i + 1].argmin() + silence_start
if silence_start == 0:
sil_tags.append((0, pos))
else:
sil_tags.append((pos, pos))
clip_start = pos
elif i - silence_start <= self.max_sil_kept * 2:
pos = rms_list[
i - self.max_sil_kept : silence_start + self.max_sil_kept + 1
].argmin()
pos += i - self.max_sil_kept
pos_l = (
rms_list[
silence_start : silence_start + self.max_sil_kept + 1
].argmin()
+ silence_start
)
pos_r = (
rms_list[i - self.max_sil_kept : i + 1].argmin()
+ i
- self.max_sil_kept
)
if silence_start == 0:
sil_tags.append((0, pos_r))
clip_start = pos_r
else:
sil_tags.append((min(pos_l, pos), max(pos_r, pos)))
clip_start = max(pos_r, pos)
else:
pos_l = (
rms_list[
silence_start : silence_start + self.max_sil_kept + 1
].argmin()
+ silence_start
)
pos_r = (
rms_list[i - self.max_sil_kept : i + 1].argmin()
+ i
- self.max_sil_kept
)
if silence_start == 0:
sil_tags.append((0, pos_r))
else:
sil_tags.append((pos_l, pos_r))
clip_start = pos_r
silence_start = None
# Deal with trailing silence.
total_frames = rms_list.shape[0]
if (
silence_start is not None
and total_frames - silence_start >= self.min_interval
):
silence_end = min(total_frames, silence_start + self.max_sil_kept)
pos = rms_list[silence_start : silence_end + 1].argmin() + silence_start
sil_tags.append((pos, total_frames + 1))
# Apply and return slices.
if len(sil_tags) == 0:
return [waveform]
else:
chunks = []
if sil_tags[0][0] > 0:
chunks.append(self._apply_slice(waveform, 0, sil_tags[0][0]))
for i in range(len(sil_tags) - 1):
chunks.append(
self._apply_slice(waveform, sil_tags[i][1], sil_tags[i + 1][0])
)
if sil_tags[-1][1] < total_frames:
chunks.append(
self._apply_slice(waveform, sil_tags[-1][1], total_frames)
)
return chunks
if Mode == "Separate":
print("Mode is set to Separate. Skipping this section")
elif Mode == "Splitting":
audio, sr = librosa.load(
f"separated/htdemucs/{AUDIO_NAME}/vocals.wav", sr=None, mono=False
) # Load an audio file with librosa.
slicer = Slicer(
sr=sr,
threshold=-40,
min_length=5000,
min_interval=500,
hop_size=10,
max_sil_kept=500,
)
chunks = slicer.slice(audio)
for i, chunk in enumerate(chunks):
if len(chunk.shape) > 1:
chunk = chunk.T # Swap axes if the audio is stereo.
soundfile.write(
f"dataset/{AUDIO_NAME}/split_{i}.wav", chunk, sr
) # Save sliced audio files with soundfile.
if Mode == "Separate":
print("Mode is set to Separate. Skipping this section")
elif Mode == "Splitting":
# Create directory
os.makedirs(f"drive/MyDrive/dataset/{AUDIO_NAME}", exist_ok=True)
# Copy files
for file in os.listdir(f"dataset/{AUDIO_NAME}"):
shutil.copy(
f"dataset/{AUDIO_NAME}/{file}", f"drive/MyDrive/dataset/{AUDIO_NAME}"
)