-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathtrain.py
247 lines (217 loc) · 10.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
"""
Training process.
$ python train.py
"""
import os, sys
import time
import numpy as np
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader
from tensorboardX import SummaryWriter
from misc import options
from misc import utils
from misc import metric
cudnn.benchmark = True
cudnn.deterministic = True
def main():
# Setup workspace and backup files
cfg = options.get_config()
workspace = utils.setup_workspace(cfg.workspace)
if cfg.pretrained is not None:
logger = utils.Logger(os.path.join(workspace.log, 'train_log.txt'), mode='a')
else:
logger = utils.Logger(os.path.join(workspace.log, 'train_log.txt'))
tf_logger = SummaryWriter(workspace.log)
logger.write('Workspace: {}'.format(cfg.workspace), 'green')
logger.write('CUDA: {}, Multi-GPU: {}'.format(cfg.cuda, cfg.multi_gpu), 'green')
logger.write('To-disparity: {}'.format(cfg.to_disparity), 'green')
# Define dataloader
logger.write('Dataset: {}'.format(cfg.dataset_name), 'green')
train_dataset, val_dataset = options.get_dataset(cfg.dataset_name)
train_loader = DataLoader(train_dataset, batch_size=cfg.batch_size, shuffle=True,
num_workers=cfg.workers, pin_memory=True, sampler=None,
worker_init_fn=lambda work_id: np.random.seed(work_id))
# worker_init_fn ensures different sampling patterns for
# each data loading thread
val_loader = DataLoader(val_dataset, batch_size=1, shuffle=False, pin_memory=True,
num_workers=cfg.workers)
# Define model
logger.write('Model: {}'.format(cfg.model_name), 'green')
model = options.get_model(cfg.model_name)
if cfg.multi_gpu:
model = nn.DataParallel(model)
if cfg.cuda:
model = model.cuda()
# Define loss function
criterion = options.get_criterion(cfg.criterion_name)
if cfg.cuda:
criterion = criterion.cuda()
logger.write('Criterion: {}'.format(criterion), 'green')
# Define optimizer and learning rate scheduler
optim = options.get_optimizer(cfg.optimizer_name, model.parameters())
lr_scheduler = options.get_lr_scheduler(cfg.lr_scheduler_name, optim)
logger.write('Optimizer: {}'.format(optim), 'green')
if lr_scheduler is not None:
logger.write('Learning rate schedular: {}'.format(lr_scheduler), 'green')
# [Optional] load pretrained model
start_ep = 0
global_step = 0
local_start = 0
if cfg.pretrained is not None:
start_ep, global_step = utils.load_checkpoint(model, optim, lr_scheduler, cfg.pretrained, cfg.weight_only)
logger.write('Load pretrained model from {}'.format(cfg.pretrained), 'green')
#global_step = len(train_dataset) * start_ep # NOTE: global step start from the beginning of the epoch
local_start = global_step % len(train_dataset)
# Start training
logger.write('Start training...', 'green')
for ep in range(start_ep, cfg.max_epoch):
if lr_scheduler is not None:
logger.write('Update learning rate: {} --> '.format(lr_scheduler.get_lr()[0]), 'magenta', end='')
lr_scheduler.step()
logger.write('{}'.format(lr_scheduler.get_lr()[0]), 'magenta')
# Train an epoch
model.train()
meters = metric.Metrics(cfg.train_metric_field)
avg_meters = metric.MovingAverageEstimator(cfg.train_metric_field)
end = time.time()
for it, data in enumerate(train_loader, local_start):
# Pack data
if cfg.cuda:
for k in data.keys():
data[k] = data[k].cuda()
inputs = dict()
inputs['left_rgb'] = data['left_rgb']
inputs['right_rgb'] = data['right_rgb']
if cfg.to_disparity:
inputs['left_sd'] = data['left_sdisp']
inputs['right_sd'] = data['right_sdisp']
target = data['left_disp']
else:
inputs['left_sd'] = data['left_sd']
inputs['right_sd'] = data['right_sd']
target = data['left_d']
data_time = time.time() - end
# Inference, compute loss and update model
end = time.time()
optim.zero_grad()
pred = model(inputs)
if cfg.criterion_name in ['inv_disp_l1']:
pred_d = utils.disp2depth(pred, data['width'].item())
loss = criterion(pred_d, data['left_d'])
else:
loss = criterion(pred, target)
loss.backward()
optim.step()
update_time = time.time() - end
end = time.time()
# Measure performance
pred_np = pred.data.cpu().numpy()
target_np = target.data.cpu().numpy()
results = meters.compute(pred_np, target_np)
avg_meters.update(results)
# Print results
if (it % cfg.print_step) == 0:
logger.write('[{:2d}/{:2d}][{:5d}/{:5d}] data time: {:4.3f}, update time: {:4.3f}, loss: {:.4f}'\
.format(ep, cfg.max_epoch, it, len(train_loader), data_time,
update_time, loss.item()))
avg_results = avg_meters.compute()
logger.write(' [Average results] ', end='')
for key, val in avg_results.items():
logger.write('{}: {:5.3f} '.format(key, val), end='')
logger.write('')
avg_meters.reset()
# Log to tensorboard
if (it % cfg.tflog_step) == 0:
tf_logger.add_scalar('A-Loss/loss', loss.data, global_step)
for key, val in results.items():
tf_logger.add_scalar('B-Train-Dense-Metric/{}'.format(key), val, global_step)
if cfg.lr_scheduler_name is not None:
tf_logger.add_scalar('C-Learning-Rate', lr_scheduler.get_lr()[0], global_step)
tf_logger.add_image('A-RGB/left', inputs['left_rgb'].data, global_step)
tf_logger.add_image('A-RGB/right', inputs['right_rgb'].data, global_step)
norm_factor = target.data.max(-1)[0].max(-1)[0].max(-1)[0][:, None, None, None]
tf_logger.add_image('B-sD', inputs['left_sd'].data / norm_factor, global_step)
tf_logger.add_image('C-Pred', pred.data / norm_factor, global_step)
tf_logger.add_image('C-Ground-Truth', target.data / norm_factor, global_step)
if cfg.dump_all_param: # NOTE: this will require a lot of HDD memory
for name, param in model.named_parameters():
tf_logger.add_histogram(name+'/vars', param.data.clone().cpu().numpy(), global_step)
if param.requires_grad:
tf_logger.add_histogram(name+'/grads', param.grad.clone().cpu().numpy(), global_step)
# On-the-fly validation
if (it % cfg.val_step) == 0:# and not (ep == 0 and it == 0):
validate(global_step, val_loader, model, logger, tf_logger, cfg)
# Save model
if (it % cfg.save_step) == 0:
ckpt_path = utils.save_checkpoint(workspace.ckpt, model, optim, lr_scheduler, ep, global_step)
logger.write('Save checkpoint to {}'.format(ckpt_path), 'magenta')
# Update global step
global_step += 1
if it >= len(train_dataset):
local_start = 0
break
def validate(global_step, loader, model, logger, tf_logger, cfg):
model.eval()
pbar = tqdm(loader)
pbar.set_description('Online validation')
disp_meters = metric.Metrics(['err_3px'])
disp_avg_meters = metric.MovingAverageEstimator(['err_3px'])
depth_meters = metric.Metrics(cfg.val_metric_field)
depth_avg_meters = metric.MovingAverageEstimator(cfg.val_metric_field)
with torch.no_grad():
for it, data in enumerate(pbar):
# Pack data
if cfg.cuda:
for k in data.keys():
data[k] = data[k].cuda()
inputs = dict()
inputs['left_rgb'] = data['left_rgb']
inputs['right_rgb'] = data['right_rgb']
if cfg.to_disparity:
inputs['left_sd'] = data['left_sdisp']
inputs['right_sd'] = data['right_sdisp']
else:
inputs['left_sd'] = data['left_sd']
inputs['right_sd'] = data['right_sd']
target_d = data['left_d']
target_disp = data['left_disp']
img_w = data['width'].item()
# Inference
pred = model(inputs)
if cfg.to_disparity:
pred_d = utils.disp2depth(pred, img_w)
pred_disp = pred
else:
raise NotImplementedError
# Measure performance
if cfg.to_disparity:
# disparity
pred_disp_np = pred_disp.data.cpu().numpy()
target_disp_np = target_disp.data.cpu().numpy()
disp_results = disp_meters.compute(pred_disp_np, target_disp_np)
disp_avg_meters.update(disp_results)
# depth
pred_d_np = pred_d.data.cpu().numpy()
target_d_np = target_d.data.cpu().numpy()
depth_results = depth_meters.compute(pred_d_np, target_d_np)
depth_avg_meters.update(depth_results)
else:
raise NotImplementedError
logger.write('\nValidation results: ', 'magenta')
if cfg.to_disparity:
disp_avg_results = disp_avg_meters.compute()
for key, val in disp_avg_results.items():
logger.write('- [disparity] {}: {}'.format(key, val), 'magenta')
tf_logger.add_scalar('B-Val-Dense-Metric/disp-{}'.format(key), val, global_step)
depth_avg_results = depth_avg_meters.compute()
for key, val in depth_avg_results.items():
logger.write('- [depth] {}: {}'.format(key, val), 'magenta')
tf_logger.add_scalar('B-Val-Dense-Metric/depth-{}'.format(key), val, global_step)
logger.write('\n')
# NOTE: remember to set back to train mode after on-the-fly validation
model.train()
if __name__ == '__main__':
main()