-
Notifications
You must be signed in to change notification settings - Fork 6
/
rnn_module.py
231 lines (191 loc) · 9.25 KB
/
rnn_module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
"""Module for constructing RNN Cells."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import math
import tensorflow as tf
from tensorflow.contrib.compiler import jit
from tensorflow.contrib.layers.python.layers import layers
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import op_def_registry
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import clip_ops
from tensorflow.python.ops import init_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import nn_ops
from tensorflow.python.ops import random_ops
from tensorflow.python.ops import rnn_cell_impl
from tensorflow.python.ops import variable_scope as vs
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.util import nest
def _get_concat_variable(name, shape, dtype, num_shards):
"""Get a sharded variable concatenated into one tensor."""
sharded_variable = _get_sharded_variable(name, shape, dtype, num_shards)
if len(sharded_variable) == 1:
return sharded_variable[0]
concat_name = name + "/concat"
concat_full_name = vs.get_variable_scope().name + "/" + concat_name + ":0"
for value in ops.get_collection(ops.GraphKeys.CONCATENATED_VARIABLES):
if value.name == concat_full_name:
return value
concat_variable = array_ops.concat(sharded_variable, 0, name=concat_name)
ops.add_to_collection(ops.GraphKeys.CONCATENATED_VARIABLES,
concat_variable)
return concat_variable
def _get_sharded_variable(name, shape, dtype, num_shards):
"""Get a list of sharded variables with the given dtype."""
if num_shards > shape[0]:
raise ValueError("Too many shards: shape=%s, num_shards=%d" %
(shape, num_shards))
unit_shard_size = int(math.floor(shape[0] / num_shards))
remaining_rows = shape[0] - unit_shard_size * num_shards
shards = []
for i in range(num_shards):
current_size = unit_shard_size
if i < remaining_rows:
current_size += 1
shards.append(vs.get_variable(name + "_%d" % i, [current_size] + shape[1:],
dtype=dtype))
return shards
class CoupledInputForgetGateLSTMCell(rnn_cell_impl.RNNCell):
"""Long short-term memory unit (LSTM) recurrent network cell.
The default non-peephole implementation is based on:
http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf
S. Hochreiter and J. Schmidhuber.
"Long Short-Term Memory". Neural Computation, 9(8):1735-1780, 1997.
The peephole implementation is based on:
https://research.google.com/pubs/archive/43905.pdf
Hasim Sak, Andrew Senior, and Francoise Beaufays.
"Long short-term memory recurrent neural network architectures for
large scale acoustic modeling." INTERSPEECH, 2014.
The coupling of input and forget gate is based on:
http://arxiv.org/pdf/1503.04069.pdf
Greff et al. "LSTM: A Search Space Odyssey"
The class uses optional peep-hole connections, and an optional projection
layer.
"""
def __init__(self, num_units, use_peepholes=False,
initializer=None, num_proj=None, proj_clip=None,
num_unit_shards=1, num_proj_shards=1,
forget_bias=1.0, state_is_tuple=True,
activation=math_ops.tanh, reuse=None):
"""Initialize the parameters for an LSTM cell.
Args:
num_units: int, The number of units in the LSTM cell
use_peepholes: bool, set True to enable diagonal/peephole connections.
initializer: (optional) The initializer to use for the weight and
projection matrices.
num_proj: (optional) int, The output dimensionality for the projection
matrices. If None, no projection is performed.
proj_clip: (optional) A float value. If `num_proj > 0` and `proj_clip` is
provided, then the projected values are clipped elementwise to within
`[-proj_clip, proj_clip]`.
num_unit_shards: How to split the weight matrix. If >1, the weight
matrix is stored across num_unit_shards.
num_proj_shards: How to split the projection matrix. If >1, the
projection matrix is stored across num_proj_shards.
forget_bias: Biases of the forget gate are initialized by default to 1
in order to reduce the scale of forgetting at the beginning of
the training.
state_is_tuple: If True, accepted and returned states are 2-tuples of
the `c_state` and `m_state`. By default (False), they are concatenated
along the column axis. This default behavior will soon be deprecated.
activation: Activation function of the inner states.
reuse: (optional) Python boolean describing whether to reuse variables
in an existing scope. If not `True`, and the existing scope already has
the given variables, an error is raised.
"""
super(CoupledInputForgetGateLSTMCell, self).__init__(_reuse=reuse)
if not state_is_tuple:
logging.warn(
"%s: Using a concatenated state is slower and will soon be "
"deprecated. Use state_is_tuple=True.", self)
self._num_units = num_units
self._use_peepholes = use_peepholes
self._initializer = initializer
self._num_proj = num_proj
self._proj_clip = proj_clip
self._num_unit_shards = num_unit_shards
self._num_proj_shards = num_proj_shards
self._forget_bias = forget_bias
self._state_is_tuple = state_is_tuple
self._activation = activation
self._reuse = reuse
if num_proj:
self._state_size = (rnn_cell_impl.LSTMStateTuple(num_units, num_proj)
if state_is_tuple else num_units + num_proj)
self._output_size = num_proj
else:
self._state_size = (rnn_cell_impl.LSTMStateTuple(num_units, num_units)
if state_is_tuple else 2 * num_units)
self._output_size = num_units
@property
def state_size(self):
return self._state_size
@property
def output_size(self):
return self._output_size
def call(self, inputs, state):
"""Run one step of LSTM.
Args:
inputs: input Tensor, 2D, batch x num_units.
state: if `state_is_tuple` is False, this must be a state Tensor,
`2-D, batch x state_size`. If `state_is_tuple` is True, this must be a
tuple of state Tensors, both `2-D`, with column sizes `c_state` and
`m_state`.
scope: VariableScope for the created subgraph; defaults to "LSTMCell".
Returns:
A tuple containing:
- A `2-D, [batch x output_dim]`, Tensor representing the output of the
LSTM after reading `inputs` when previous state was `state`.
Here output_dim is:
num_proj if num_proj was set,
num_units otherwise.
- Tensor(s) representing the new state of LSTM after reading `inputs` when
the previous state was `state`. Same type and shape(s) as `state`.
Raises:
ValueError: If input size cannot be inferred from inputs via
static shape inference.
"""
sigmoid = math_ops.sigmoid
num_proj = self._num_units if self._num_proj is None else self._num_proj
if self._state_is_tuple:
(c_prev, m_prev) = state
else:
c_prev = array_ops.slice(state, [0, 0], [-1, self._num_units])
m_prev = array_ops.slice(state, [0, self._num_units], [-1, num_proj])
dtype = inputs.dtype
input_size = inputs.get_shape().with_rank(2)[1]
if input_size.value is None:
raise ValueError("Could not infer input size from inputs.get_shape()[-1]")
# Input gate weights
self.w_xi = tf.get_variable("_w_xi", [input_size.value, self._num_units])
self.w_hi = tf.get_variable("_w_hi", [self._num_units, self._num_units])
self.w_ci = tf.get_variable("_w_ci", [self._num_units, self._num_units])
# Output gate weights
self.w_xo = tf.get_variable("_w_xo", [input_size.value, self._num_units])
self.w_ho = tf.get_variable("_w_ho", [self._num_units, self._num_units])
self.w_co = tf.get_variable("_w_co", [self._num_units, self._num_units])
# Cell weights
self.w_xc = tf.get_variable("_w_xc", [input_size.value, self._num_units])
self.w_hc = tf.get_variable("_w_hc", [self._num_units, self._num_units])
# Initialize the bias vectors
self.b_i = tf.get_variable("_b_i", [self._num_units], initializer=init_ops.zeros_initializer())
self.b_c = tf.get_variable("_b_c", [self._num_units], initializer=init_ops.zeros_initializer())
self.b_o = tf.get_variable("_b_o", [self._num_units], initializer=init_ops.zeros_initializer())
i_t = sigmoid(math_ops.matmul(inputs, self.w_xi) +
math_ops.matmul(m_prev, self.w_hi) +
math_ops.matmul(c_prev, self.w_ci) +
self.b_i)
c_t = ((1 - i_t) * c_prev + i_t * self._activation(math_ops.matmul(inputs, self.w_xc) +
math_ops.matmul(m_prev, self.w_hc) + self.b_c))
o_t = sigmoid(math_ops.matmul(inputs, self.w_xo) +
math_ops.matmul(m_prev, self.w_ho) +
math_ops.matmul(c_t, self.w_co) +
self.b_o)
h_t = o_t * self._activation(c_t)
new_state = (rnn_cell_impl.LSTMStateTuple(c_t, h_t) if self._state_is_tuple else
array_ops.concat([c_t, h_t], 1))
return h_t, new_state