This directory contains the training and evaluation scripts for stitching LeViT-192/256.
- PyTorch 1.10.1+
- CUDA 11.1+
- fvcore 0.1.5
Download the pretrained weights of LeViT-192/256 from here and put them in the pretrained/
directory.
The following commands can be helpful.
cd pretrained/
wget https://dl.fbaipublicfiles.com/LeViT/LeViT-192-92712e41.pth
wget https://dl.fbaipublicfiles.com/LeViT/LeViT-256-13b5763e.pth
To stitch LeViT-192/256 on ImageNet with 8 GPUs, run the following command:
python -m torch.distributed.launch --nproc_per_node=8 --use_env main.py --model stitch_levits \
--data-path [path/to/imagenet] \
--output_dir ./exp_levit_192_256 \
--epochs 100 \
--batch-size 128 \
--lr 5e-5 \
--warmup-lr 1e-7 \
--min-lr 1e-6
You can download our trained weights from here. Next,
python -m torch.distributed.launch --nproc_per_node=1 --use_env main.py --model stitch_levits \
--data-path [path/to/imagenet] \
--output_dir ./eval_levit_192_256 \
--batch-size 128 \
--resume [path/to/checkpoint.pth] --eval
After evaluation, you can find a stitches_res.txt
under the output_dir
directory which contains the results for all stitches. Our evaluation results can be found at results/stitches_res.txt
.
This code is based on LeViT. We thank the authors for their released code.