-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathtrain.py
275 lines (234 loc) · 12.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import os.path as osp
import os
import sys
import time
import argparse
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.distributed as dist
import torch.backends.cudnn as cudnn
from torch.nn.parallel import DistributedDataParallel
from dataloader.dataloader import get_train_loader
from models.builder import EncoderDecoder as segmodel
from dataloader.RGBXDataset import RGBXDataset
from dataloader.dataloader import ValPre
from utils.init_func import init_weight, group_weight
from utils.lr_policy import WarmUpPolyLR
from engine.engine import Engine
from engine.logger import get_logger
from utils.pyt_utils import all_reduce_tensor
from utils.pyt_utils import ensure_dir, link_file, load_model, parse_devices
from utils.visualize import print_iou, show_img
from engine.logger import get_logger
from utils.metric import hist_info, compute_score
from eval import SegEvaluator
import shutil
from tensorboardX import SummaryWriter
parser = argparse.ArgumentParser()
logger = get_logger()
os.environ['MASTER_PORT'] = '16005'
with Engine(custom_parser=parser) as engine:
args = parser.parse_args()
print(args)
dataset_name = args.dataset_name
if dataset_name == 'mfnet':
from configs.config_MFNet import config
elif dataset_name == 'pst':
from configs.config_pst900 import config
elif dataset_name == 'nyu':
from configs.config_nyu import config
elif dataset_name == 'sun':
from configs.config_sunrgbd import config
else:
raise ValueError('Not a valid dataset name')
print("=======================================")
print(config.tb_dir)
print("=======================================")
cudnn.benchmark = True
seed = config.seed
if engine.distributed:
seed = engine.local_rank
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
# data loader
train_loader, train_sampler = get_train_loader(engine, RGBXDataset, config)
if (engine.distributed and (engine.local_rank == 0)) or (not engine.distributed):
tb_dir = config.tb_dir + '/{}'.format(time.strftime("%b%d_%d-%H-%M", time.localtime()))
generate_tb_dir = config.tb_dir + '/tb'
tb = SummaryWriter(log_dir=tb_dir)
engine.link_tb(tb_dir, generate_tb_dir)
# config network and criterion
criterion = nn.CrossEntropyLoss(reduction='mean', ignore_index=config.background)
if engine.distributed:
BatchNorm2d = nn.SyncBatchNorm
else:
BatchNorm2d = nn.BatchNorm2d
model=segmodel(cfg=config, criterion=criterion, norm_layer=BatchNorm2d)
# group weight and config optimizer
base_lr = config.lr
if engine.distributed:
base_lr = config.lr
params_list = []
params_list = group_weight(params_list, model, BatchNorm2d, base_lr)
if config.optimizer == 'AdamW':
optimizer = torch.optim.AdamW(params_list, lr=base_lr, betas=(0.9, 0.999), weight_decay=config.weight_decay)
elif config.optimizer == 'SGDM':
optimizer = torch.optim.SGD(params_list, lr=base_lr, momentum=config.momentum, weight_decay=config.weight_decay)
else:
raise NotImplementedError
# config lr policy
total_iteration = config.nepochs * config.niters_per_epoch
lr_policy = WarmUpPolyLR(base_lr, config.lr_power, total_iteration, config.niters_per_epoch * config.warm_up_epoch)
if engine.distributed:
logger.info('.............distributed training.............')
if torch.cuda.is_available():
model.cuda()
model = DistributedDataParallel(model, device_ids=[engine.local_rank],
output_device=engine.local_rank, find_unused_parameters=False)
else:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
engine.register_state(dataloader=train_loader, model=model,
optimizer=optimizer)
if engine.continue_state_object:
engine.restore_checkpoint()
optimizer.zero_grad()
model.train()
logger.info('begin trainning:')
# Initialize the evaluation dataset and evaluator
val_setting = {'rgb_root': config.rgb_root_folder,
'rgb_format': config.rgb_format,
'gt_root': config.gt_root_folder,
'gt_format': config.gt_format,
'transform_gt': config.gt_transform,
'x_root':config.x_root_folder,
'x_format': config.x_format,
'x_single_channel': config.x_is_single_channel,
'class_names': config.class_names,
'train_source': config.train_source,
'eval_source': config.eval_source,
'class_names': config.class_names}
val_pre = ValPre()
val_dataset = RGBXDataset(val_setting, 'val', val_pre)
best_mean_iou = 0.0 # Track the best mean IoU for model saving
best_epoch = 100000 # Track the epoch with the best mean IoU for model saving
for epoch in range(engine.state.epoch, config.nepochs+1):
if engine.distributed:
train_sampler.set_epoch(epoch)
bar_format = '{desc}[{elapsed}<{remaining},{rate_fmt}]'
pbar = tqdm(range(config.niters_per_epoch), file=sys.stdout,
bar_format=bar_format)
dataloader = iter(train_loader)
sum_loss = 0
for idx in pbar:
engine.update_iteration(epoch, idx)
minibatch = next(dataloader)
imgs = minibatch['data']
gts = minibatch['label']
modal_xs = minibatch['modal_x']
imgs = imgs.cuda(non_blocking=True)
gts = gts.cuda(non_blocking=True)
modal_xs = modal_xs.cuda(non_blocking=True)
aux_rate = 0.2
loss = model(imgs, modal_xs, gts)
# reduce the whole loss over multi-gpu
if engine.distributed:
reduce_loss = all_reduce_tensor(loss, world_size=engine.world_size)
optimizer.zero_grad()
loss.backward()
optimizer.step()
current_idx = (epoch- 1) * config.niters_per_epoch + idx
lr = lr_policy.get_lr(current_idx)
for i in range(len(optimizer.param_groups)):
optimizer.param_groups[i]['lr'] = lr
if engine.distributed:
if dist.get_rank() == 0:
sum_loss += reduce_loss.item()
print_str = 'Epoch {}/{}'.format(epoch, config.nepochs) \
+ ' Iter {}/{}:'.format(idx + 1, config.niters_per_epoch) \
+ ' lr=%.4e' % lr \
+ ' loss=%.4f total_loss=%.4f' % (reduce_loss.item(), (sum_loss / (idx + 1)))
pbar.set_description(print_str, refresh=False)
else:
sum_loss += loss
print_str = 'Epoch {}/{}'.format(epoch, config.nepochs) \
+ ' Iter {}/{}:'.format(idx + 1, config.niters_per_epoch) \
+ ' lr=%.4e' % lr \
+ ' loss=%.4f total_loss=%.4f' % (loss, (sum_loss / (idx + 1)))
pbar.set_description(print_str, refresh=False)
del loss
if (engine.distributed and (engine.local_rank == 0)) or (not engine.distributed):
tb.add_scalar('train_loss', sum_loss / len(pbar), epoch)
if (epoch >= config.checkpoint_start_epoch) and (epoch % config.checkpoint_step == 0) or (epoch == config.nepochs):
if engine.distributed and (engine.local_rank == 0):
engine.save_and_link_checkpoint(config.checkpoint_dir,
config.log_dir,
config.log_dir_link)
elif not engine.distributed:
engine.save_and_link_checkpoint(config.checkpoint_dir,
config.log_dir,
config.log_dir_link)
# devices_val = [engine.local_rank] if engine.distributed else [0]
torch.cuda.empty_cache()
if engine.distributed:
if dist.get_rank() == 0:
# only test on rank 0, otherwise there would be some synchronization problems
# evaluation to decide whether to save the model
if (epoch >= config.checkpoint_start_epoch) and (epoch - config.checkpoint_start_epoch) % config.checkpoint_step == 0:
model.eval()
with torch.no_grad():
all_dev = parse_devices(args.devices)
# network = segmodel(cfg=config, criterion=None, norm_layer=nn.BatchNorm2d).cuda(all_dev[0])
segmentor = SegEvaluator(dataset=val_dataset, class_num=config.num_classes,
norm_mean=config.norm_mean, norm_std=config.norm_std,
network=model, multi_scales=config.eval_scale_array,
is_flip=config.eval_flip, devices=[model.device],
verbose=False, config=config,
)
_, mean_IoU = segmentor.run(config.checkpoint_dir, str(epoch), config.val_log_file,
config.link_val_log_file)
print('mean_IoU:', mean_IoU)
# Determine if the model performance improved
if mean_IoU > best_mean_iou:
# If the model improves, remove the saved checkpoint for this epoch
checkpoint_path = os.path.join(config.checkpoint_dir, f'epoch-{best_epoch}.pth')
if os.path.exists(checkpoint_path):
os.remove(checkpoint_path)
best_epoch = epoch
best_mean_iou = mean_IoU
else:
# If the model does not improve, remove the saved checkpoint for this epoch
checkpoint_path = os.path.join(config.checkpoint_dir, f'epoch-{epoch}.pth')
if os.path.exists(checkpoint_path):
os.remove(checkpoint_path)
model.train()
else:
if (epoch >= config.checkpoint_start_epoch) and (epoch - config.checkpoint_start_epoch) % config.checkpoint_step == 0:
model.eval()
with torch.no_grad():
devices_val = [engine.local_rank] if engine.distributed else [0]
segmentor = SegEvaluator(dataset=val_dataset, class_num=config.num_classes,
norm_mean=config.norm_mean, norm_std=config.norm_std,
network=model, multi_scales=config.eval_scale_array,
is_flip=config.eval_flip, devices=[1,2,3],
verbose=False, config=config,
)
_, mean_IoU = segmentor.run(config.checkpoint_dir, str(epoch), config.val_log_file,
config.link_val_log_file)
print('mean_IoU:', mean_IoU)
# Determine if the model performance improved
if mean_IoU > best_mean_iou:
# If the model improves, remove the saved checkpoint for this epoch
checkpoint_path = os.path.join(config.checkpoint_dir, f'epoch-{best_epoch}.pth')
if os.path.exists(checkpoint_path):
os.remove(checkpoint_path)
best_epoch = epoch
best_mean_iou = mean_IoU
else:
# If the model does not improve, remove the saved checkpoint for this epoch
checkpoint_path = os.path.join(config.checkpoint_dir, f'epoch-{epoch}.pth')
if os.path.exists(checkpoint_path):
os.remove(checkpoint_path)
model.train()