-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodel.py
445 lines (378 loc) · 25.1 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
from collections import namedtuple
from ops import *
from utils import *
from glob import glob
import time
import scipy.io
def build_net_vgg(ntype, nin, nwb=None, name=None):
if ntype == 'conv':
return tf.nn.relu(tf.nn.conv2d(nin, nwb[0], strides=[1, 1, 1, 1], padding='SAME', name=name) + nwb[1])
elif ntype == 'pool':
return tf.nn.avg_pool(nin, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
def get_weight_bias(vgg_layers, i):
weights = vgg_layers[i][0][0][2][0][0]
weights = tf.constant(weights)
bias = vgg_layers[i][0][0][2][0][1]
bias = tf.constant(np.reshape(bias, (bias.size)))
return weights, bias
def build_vgg19(input, reuse=False):
if reuse:
tf.get_variable_scope().reuse_variables()
net = {}
vgg_rawnet = scipy.io.loadmat('imagenet-vgg-verydeep-19.mat')
vgg_layers = vgg_rawnet['layers'][0]
net['input'] = input - np.array([-0.029960784313725397, -0.084086274509804, -0.1847921568627452]).reshape((1, 1, 1, 3))
net['conv1_1'] = build_net_vgg('conv', net['input'], get_weight_bias(vgg_layers, 0), name='vgg_conv1_1')
net['conv1_2'] = build_net_vgg('conv', net['conv1_1'], get_weight_bias(vgg_layers, 2), name='vgg_conv1_2')
net['pool1'] = build_net_vgg('pool', net['conv1_2'])
net['conv2_1'] = build_net_vgg('conv', net['pool1'], get_weight_bias(vgg_layers, 5), name='vgg_conv2_1')
net['conv2_2'] = build_net_vgg('conv', net['conv2_1'], get_weight_bias(vgg_layers, 7), name='vgg_conv2_2')
net['pool2'] = build_net_vgg('pool', net['conv2_2'])
net['conv3_1'] = build_net_vgg('conv', net['pool2'], get_weight_bias(vgg_layers, 10), name='vgg_conv3_1')
net['conv3_2'] = build_net_vgg('conv', net['conv3_1'], get_weight_bias(vgg_layers, 12), name='vgg_conv3_2')
net['conv3_3'] = build_net_vgg('conv', net['conv3_2'], get_weight_bias(vgg_layers, 14), name='vgg_conv3_3')
net['conv3_4'] = build_net_vgg('conv', net['conv3_3'], get_weight_bias(vgg_layers, 16), name='vgg_conv3_4')
net['pool3'] = build_net_vgg('pool', net['conv3_4'])
net['conv4_1'] = build_net_vgg('conv', net['pool3'], get_weight_bias(vgg_layers, 19), name='vgg_conv4_1')
net['conv4_2'] = build_net_vgg('conv', net['conv4_1'], get_weight_bias(vgg_layers, 21), name='vgg_conv4_2')
net['conv4_3'] = build_net_vgg('conv', net['conv4_2'], get_weight_bias(vgg_layers, 23), name='vgg_conv4_3')
net['conv4_4'] = build_net_vgg('conv', net['conv4_3'], get_weight_bias(vgg_layers, 25), name='vgg_conv4_4')
net['pool4'] = build_net_vgg('pool', net['conv4_4'])
net['conv5_1'] = build_net_vgg('conv', net['pool4'], get_weight_bias(vgg_layers, 28), name='vgg_conv5_1')
net['conv5_2'] = build_net_vgg('conv', net['conv5_1'], get_weight_bias(vgg_layers, 30), name='vgg_conv5_2')
net['conv5_3'] = build_net_vgg('conv', net['conv5_2'], get_weight_bias(vgg_layers, 32), name='vgg_conv5_3')
net['conv5_4'] = build_net_vgg('conv', net['conv5_3'], get_weight_bias(vgg_layers, 34), name='vgg_conv5_4')
net['pool5'] = build_net_vgg('pool', net['conv5_4'])
return net
def compute_error(real, fake):
return tf.reduce_mean(tf.abs(real - fake))
def discriminator(image, options, reuse=False, name="discriminator"):
with tf.variable_scope(name):
# image is 256 x 256 x input_c_dim
if reuse:
tf.get_variable_scope().reuse_variables()
else:
assert tf.get_variable_scope().reuse is False
h0 = lrelu(conv2d(image, options.df_dim, name='d_h0_conv'))
h1 = lrelu(instance_norm(conv2d(h0, options.df_dim*2, name='d_h1_conv'), 'd_bn1'))
h2 = lrelu(instance_norm(conv2d(h1, options.df_dim*4, name='d_h2_conv'), 'd_bn2'))
h3 = lrelu(instance_norm(conv2d(h2, options.df_dim*8, name='d_h3_conv'), 'd_bn3'))
h4_logit = conv2d(h3, 1, s=1, name='d_h3_pred')
h4 = lrelu(instance_norm(conv2d(h3, options.df_dim * 8, name='d_h4_conv'), 'd_bn4'))
h5 = lrelu(instance_norm(conv2d(h4, options.df_dim * 4, name='d_h5_conv'), 'd_bn5'))
h6 = lrelu(instance_norm(conv2d(h5, options.df_dim * 2, name='d_h6_conv'), 'd_bn6'))
h6_logit = conv2d(h6, 1, s=1, name='d_h6_pred')
return h4_logit,tf.reshape(tf.reduce_mean(h6_logit,axis=[1,2]),[1,1,1,-1])
def generator_resnet(image, options, reuse=False, name="hiding"):
with tf.variable_scope(name):
# image is 256 x 256 x input_c_dim
if reuse:
tf.get_variable_scope().reuse_variables()
else:
assert tf.get_variable_scope().reuse is False
def residule_block(x, dim, ks=3, s=1, name='res'):
p = int((ks - 1) / 2)
y = tf.pad(x, [[0, 0], [p, p], [p, p], [0, 0]], "REFLECT")
y = instance_norm(conv2d(y, dim, ks, s, padding='VALID', name=name + '_c1'), name + '_bn1')
y = tf.pad(tf.nn.relu(y), [[0, 0], [p, p], [p, p], [0, 0]], "REFLECT")
y = instance_norm(conv2d(y, dim, ks, s, padding='VALID', name=name + '_c2'), name + '_bn2')
return y + x
c0 = tf.pad(image, [[0, 0], [3, 3], [3, 3], [0, 0]], "REFLECT")
c1 = tf.nn.relu(instance_norm(conv2d(c0, options.gf_dim, 7, 1, padding='VALID', name='g_e1_c'), 'g_e1_bn'))
c2 = tf.nn.relu(instance_norm(conv2d(c1, options.gf_dim * 2, 3, 2, name='g_e2_c'), 'g_e2_bn'))
c3 = tf.nn.relu(instance_norm(conv2d(c2, options.gf_dim * 4, 3, 2, name='g_e3_c'), 'g_e3_bn'))
# define G network with 9 resnet blocks
r1 = residule_block(c3, options.gf_dim * 4, name='g_r1')
r2 = residule_block(r1, options.gf_dim * 4, name='g_r2')
r3 = residule_block(r2, options.gf_dim * 4, name='g_r3')
r4 = residule_block(r3, options.gf_dim * 4, name='g_r4')
r5 = residule_block(r4, options.gf_dim * 4, name='g_r5')
r6 = residule_block(r5, options.gf_dim * 4, name='g_r6')
r7 = residule_block(r6, options.gf_dim * 4, name='g_r7')
r8 = residule_block(r7, options.gf_dim * 4, name='g_r8')
r9 = residule_block(r8, options.gf_dim * 4, name='g_r9')
d1 = deconv2d(r9, options.gf_dim * 2, 3, 2, name='g_d1_dc')
d1 = tf.nn.relu(instance_norm(d1, 'g_d1_bn'))
d2 = deconv2d(d1, options.gf_dim, 3, 2, name='g_d2_dc')
d2 = tf.nn.relu(instance_norm(d2, 'g_d2_bn'))
d2 = tf.pad(d2, [[0, 0], [3, 3], [3, 3], [0, 0]], "REFLECT")
pred = tf.nn.tanh(conv2d(d2, options.output_c_dim, 7, 1, padding='VALID', name='g_pred_c'))
return pred
def generator_resnet_recon(image, options, reuse=False, name="revealing"):
with tf.variable_scope(name):
if reuse:
tf.get_variable_scope().reuse_variables()
else:
assert tf.get_variable_scope().reuse is False
def residule_block(x, dim, ks=3, s=1, name='res'):
p = int((ks - 1) / 2)
y = tf.pad(x, [[0, 0], [p, p], [p, p], [0, 0]], "REFLECT")
y = instance_norm(conv2d(y, dim, ks, s, padding='VALID', name=name + '_c1'), name + '_bn1')
y = tf.pad(tf.nn.relu(y), [[0, 0], [p, p], [p, p], [0, 0]], "REFLECT")
y = instance_norm(conv2d(y, dim, ks, s, padding='VALID', name=name + '_c2'), name + '_bn2')
return y + x
c0 = tf.pad(image, [[0, 0], [3, 3], [3, 3], [0, 0]], "REFLECT")
c1 = tf.nn.relu(instance_norm(conv2d(c0, options.gf_dim, 7, 1, padding='VALID', name='g_e1_c'), 'g_e1_bn'))
c2 = tf.nn.relu(instance_norm(conv2d(c1, options.gf_dim * 2, 3, 2, name='g_e2_c'), 'g_e2_bn'))
c3 = tf.nn.relu(instance_norm(conv2d(c2, options.gf_dim * 4, 3, 2, name='g_e3_c'), 'g_e3_bn'))
# define G network with 9 resnet blocks
r1 = residule_block(c3, options.gf_dim * 4, name='g_r1')
r2 = residule_block(r1, options.gf_dim * 4, name='g_r2')
r3 = residule_block(r2, options.gf_dim * 4, name='g_r3')
r4 = residule_block(r3, options.gf_dim * 4, name='g_r4')
r5 = residule_block(r4, options.gf_dim * 4, name='g_r5')
r6 = residule_block(r5, options.gf_dim * 4, name='g_r6')
r7 = residule_block(r6, options.gf_dim * 4, name='g_r7')
r8 = residule_block(r7, options.gf_dim * 4, name='g_r8')
r9 = residule_block(r8, options.gf_dim * 4, name='g_r9')
d1 = deconv2d(r9, options.gf_dim * 2, 3, 2, name='g_d1_dc')
d1 = tf.nn.relu(instance_norm(d1, 'g_d1_bn'))
d2 = deconv2d(d1, options.gf_dim, 3, 2, name='g_d2_dc')
d2 = tf.nn.relu(instance_norm(d2, 'g_d2_bn'))
d2 = tf.pad(d2, [[0, 0], [3, 3], [3, 3], [0, 0]], "REFLECT")
pred = tf.nn.tanh(conv2d(d2, options.output_c_dim*2, 7, 1, padding='VALID', name='g_pred_c'))
return pred[:,:,:,:options.output_c_dim],pred[:,:,:,options.output_c_dim:options.output_c_dim*2]
def abs_criterion(in_, target):
return tf.reduce_mean(tf.abs(in_ - target))
def mae_criterion(in_, target):
return tf.reduce_mean((in_ - target) ** 2)
def sce_criterion(logits, labels):
return tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=logits, labels=labels))
class cyclegan(object):
def __init__(self, sess, args):
self.sess = sess
self.batch_size = args.batch_size
self.image_size = args.fine_size
self.patch_size = self.image_size//2
self.input_c_dim = args.input_nc
self.output_c_dim = args.output_nc
self.L1_lambda = args.L1_lambda
self.dataset_dir = args.dataset_dir
self.discriminator = discriminator
self.generator = generator_resnet
self.generator_recon=generator_resnet_recon
if args.use_lsgan:
self.criterionGAN = mae_criterion
else:
self.criterionGAN = sce_criterion
OPTIONS = namedtuple('OPTIONS', 'batch_size image_size \
gf_dim df_dim output_c_dim is_training')
self.options = OPTIONS._make((args.batch_size, args.fine_size,
args.ngf, args.ndf, args.output_nc,
args.phase == 'train'))
self._build_model()
self.saver = tf.train.Saver()
self.pool = ImagePool(args.max_size)
def _build_model(self):
self.real_data = tf.placeholder(tf.float32,[self.batch_size, self.image_size, self.image_size,self.input_c_dim*3],name='collected_images')
self.alpha = tf.placeholder(tf.float32,[self.batch_size, 1],name='alpha')
self.real_cover = self.real_data[:, :, :, :self.input_c_dim]
self.real_message = self.real_data[:, :, :, self.input_c_dim:self.input_c_dim*2]
self.weighted = self.real_data[:, :, :, self.input_c_dim*2:self.input_c_dim*3]
self.fake_stegano = self.generator(tf.concat([self.real_cover,self.real_message],axis=3), self.options, False, name="generator_hiding")
self.recon_cover,self.recon_message = self.generator_recon(self.fake_stegano, self.options, False, name="generator_revealing")
self.fake_part = tf.random_crop(self.fake_stegano, [1, self.patch_size, self.patch_size, 3])
self.real_part = tf.random_crop(self.real_cover, [1, self.patch_size, self.patch_size, 3])
self.Dstegano_fake,self.weighted_est= self.discriminator(self.fake_stegano, self.options, reuse=False, name="discriminator")
self.Dstegano_fake_part, self.weighted_est_part = self.discriminator(self.fake_part, self.options, reuse=False,name="part")
self.g_adv=(self.criterionGAN(self.Dstegano_fake, tf.ones_like(self.Dstegano_fake))+abs_criterion(self.weighted_est,tf.zeros_like(self.weighted_est))+
self.criterionGAN(self.Dstegano_fake_part, tf.ones_like(self.Dstegano_fake_part))+abs_criterion(self.weighted_est_part,tf.zeros_like(self.weighted_est_part)))
self.g_est=(abs_criterion(self.weighted_est,tf.zeros_like(self.weighted_est))+abs_criterion(self.weighted_est_part,tf.zeros_like(self.weighted_est_part)))
with tf.variable_scope("VGG_loss"):
vgg_real = build_vgg19(self.real_message)
vgg_fake = build_vgg19(self.recon_message, reuse=True)
p1 = compute_error(vgg_real['conv1_2'], vgg_fake['conv1_2'])
p2 = compute_error(vgg_real['conv2_2'], vgg_fake['conv2_2'])
p3 = compute_error(vgg_real['conv3_2'], vgg_fake['conv3_2'])
p4 = compute_error(vgg_real['conv4_2'], vgg_fake['conv4_2'])
p5 = compute_error(vgg_real['conv5_2'], vgg_fake['conv5_2'])
self.G_loss = (p1 + p2 + p3 + p4 + p5) * 0.1
self.g_loss = self.g_adv\
+ self.G_loss \
+ self.L1_lambda * abs_criterion(self.real_cover, self.fake_stegano)\
+ self.L1_lambda * abs_criterion(self.real_cover, self.recon_cover) \
+ self.L1_lambda * abs_criterion(self.real_message, self.recon_message)
self.fake_stegano_sample = tf.placeholder(tf.float32,[self.batch_size, self.image_size, self.image_size,self.output_c_dim], name='fake_stegano_sample')
self.fake_stegano_sample_part = tf.random_crop(self.fake_stegano_sample, [1, self.patch_size, self.patch_size, 3])
self.weighted_part = tf.random_crop(self.weighted, [1, self.patch_size, self.patch_size, 3])
self.Dcover_real,self.Dcover_est = self.discriminator(self.real_cover, self.options, reuse=True, name="discriminator")
self.Dstegano_fake_sample,_ = self.discriminator(self.fake_stegano_sample, self.options, reuse=True, name="discriminator")
_, self.est_real = self.discriminator(self.weighted, self.options, reuse=True,name="discriminator")
self.d_loss_real = self.criterionGAN(self.Dcover_real, tf.ones_like(self.Dcover_real))
self.d_loss_fake = self.criterionGAN(self.Dstegano_fake_sample, tf.zeros_like(self.Dstegano_fake_sample))
self.d_adv_loss = (self.d_loss_real + self.d_loss_fake) / 2
self.Dcover_est_loss = abs_criterion(self.Dcover_est,tf.zeros_like(self.Dcover_est))
self.weight_loss = abs_criterion(self.est_real,tf.reshape(self.alpha,[1,1,1,-1]))
self.d_loss = (self.d_adv_loss + self.Dcover_est_loss+self.weight_loss)
self.est_loss=self.Dcover_est_loss+self.weight_loss
self.Dcover_real_part, self.Dcover_est_part = self.discriminator(self.real_part, self.options, reuse=True,name="part")
self.Dstegano_fake_sample_part, _ = self.discriminator(self.fake_stegano_sample_part, self.options, reuse=True,name="part")
_, self.est_real_part = self.discriminator(self.weighted_part, self.options, reuse=True,name="part")
self.d_loss_real_part = self.criterionGAN(self.Dcover_real_part, tf.ones_like(self.Dcover_real_part))
self.d_loss_fake_part = self.criterionGAN(self.Dstegano_fake_sample_part, tf.zeros_like(self.Dstegano_fake_sample_part))
self.d_adv_loss_part = (self.d_loss_real_part + self.d_loss_fake_part) / 2
self.Dcover_est_loss_part = abs_criterion(self.Dcover_est_part, tf.zeros_like(self.Dcover_est_part))
self.weight_loss_part = abs_criterion(self.est_real_part, tf.reshape(self.alpha, [1, 1, 1, -1]))
self.d_loss_part = (self.d_adv_loss_part + self.Dcover_est_loss_part + self.weight_loss_part)
### G summary
self.g_adv_sum = tf.summary.scalar("g_adv", self.g_adv)
self.g_est_sum = tf.summary.scalar("g_est", self.g_est)
self.G_loss_sum = tf.summary.scalar("G_loss", self.G_loss)
self.g_sum = tf.summary.merge([self.g_adv_sum,self.g_est_sum,self.G_loss_sum])
### D summary
self.d_adv_loss_sum = tf.summary.scalar("d_adv_loss", self.d_adv_loss)
self.d_adv_loss_part_sum = tf.summary.scalar("d_adv_loss_part", self.d_adv_loss_part)
self.d_loss_sum = tf.summary.scalar("d_loss", self.d_loss)
self.d_loss_part_sum = tf.summary.scalar("d_loss_part", self.d_loss_part)
self.d_loss_real_sum = tf.summary.scalar("d_loss_real", self.d_loss_real)
self.d_loss_fake_sum = tf.summary.scalar("d_loss_fake", self.d_loss_fake)
self.d_loss_real_part_sum = tf.summary.scalar("d_loss_real_part", self.d_loss_real_part)
self.d_loss_fake_part_sum = tf.summary.scalar("d_loss_fake_part", self.d_loss_fake_part)
self.d_sum = tf.summary.merge(
[self.d_adv_loss_sum, self.d_loss_real_sum, self.d_loss_fake_sum,
self.d_adv_loss_part_sum, self.d_loss_real_part_sum, self.d_loss_fake_part_sum,
self.d_loss_sum,self.d_loss_part_sum]
)
self.test_cover = tf.placeholder(tf.float32,[self.batch_size, self.image_size, self.image_size,self.input_c_dim], name='test_cover')
self.test_message = tf.placeholder(tf.float32,[self.batch_size, self.image_size, self.image_size,self.output_c_dim], name='test_message')
self.test_stega = self.generator(tf.concat([self.test_cover,self.test_message],axis=3), self.options, True, name="generator_hiding")
self.test_cover_recon,self.test_message_recon = self.generator_recon(self.test_stega, self.options, True, name="generator_revealing")
t_vars = tf.trainable_variables()
self.g_vars = [var for var in t_vars if 'generator' in var.name]
self.d_vars=[var for var in t_vars if 'discriminator' in var.name]
self.part_vars = [var for var in t_vars if 'part' in var.name]
for var in t_vars: print(var.name)
def train(self, args):
"""Train cyclegan"""
self.lr = tf.placeholder(tf.float32, None, name='learning_rate')
self.d_optim = tf.train.AdamOptimizer(self.lr, beta1=args.beta1).minimize(self.d_loss, var_list=self.d_vars)
self.part_optim = tf.train.AdamOptimizer(self.lr, beta1=args.beta1).minimize(self.d_loss_part, var_list=self.part_vars)
self.g_optim = tf.train.AdamOptimizer(self.lr, beta1=args.beta1).minimize(self.g_loss, var_list=self.g_vars)
init_op = tf.global_variables_initializer()
self.sess.run(init_op)
self.writer = tf.summary.FileWriter(os.path.join(args.checkpoint_dir,"logs"), self.sess.graph)
counter = 1
start_time = time.time()
if args.continue_train:
if self.load(args.checkpoint_dir):
print(" [*] Load SUCCESS")
else:
print(" [!] Load failed...")
for epoch in range(args.epoch):
data_cover = glob('./datasets/{}/*.*'.format(self.dataset_dir + '/train_cover'))
data_message = glob('./datasets/{}/*.*'.format(self.dataset_dir + '/train_message'))
np.random.shuffle(data_cover)
np.random.shuffle(data_message)
batch_idxs = min(min(len(data_cover), len(data_message)), args.train_size) // self.batch_size
lr = args.lr if epoch < args.epoch_step else args.lr * (args.epoch - epoch) / (args.epoch - args.epoch_step)
for idx in range(0, batch_idxs):
batch_files = list(zip(data_cover[idx * self.batch_size:(idx + 1) * self.batch_size],
data_message[idx * self.batch_size:(idx + 1) * self.batch_size]))
batch_images,alpha = load_train_data(batch_files[0], args.load_size, args.fine_size)
batch_images = [batch_images]
alpha = [alpha]
alpha = np.reshape(alpha,[self.batch_size,1])
batch_images = np.array(batch_images).astype(np.float32)
# Update G network and record fake outputs
fake_stegano,_,g_loss,g_est,g_adv,G_loss,summary_str = self.sess.run(
[self.fake_stegano, self.g_optim,self.g_loss,self.g_est,self.g_adv,self.G_loss, self.g_sum],
feed_dict={self.real_data: batch_images, self.lr: lr,self.alpha:alpha})
self.writer.add_summary(summary_str, counter)
# Update D network
_,_,d_loss,est_loss,d_summary_str = self.sess.run(
[self.d_optim,self.part_optim, self.d_loss,self.est_loss,self.d_sum],
feed_dict={self.real_data: batch_images,
self.fake_stegano_sample: fake_stegano,
self.lr: lr,self.alpha:alpha})
self.writer.add_summary(d_summary_str, counter)
counter += 1
print(("Epoch:[%2d][%4d/%4d] time: %4.4f g_loss: %4.4f g_est: %4.4f g_adv: %4.4f G_loss: %4.4f d_loss: %4.4f est_loss: %4.4f" % (
epoch, idx, batch_idxs, time.time() - start_time,g_loss,g_est,g_adv,G_loss,d_loss,est_loss)))
if np.mod(counter, args.print_freq) == 1:
self.sample_model(args.sample_dir, epoch, idx)
if np.mod(counter, args.save_freq) == 2:
self.save(args.checkpoint_dir, counter)
def save(self, checkpoint_dir, step):
model_name = "stegano.model"
model_dir = "%s_%s" % (self.dataset_dir, self.image_size)
checkpoint_dir = os.path.join(checkpoint_dir, model_dir)
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
self.saver.save(self.sess,
os.path.join(checkpoint_dir, model_name),
global_step=step)
def load(self, checkpoint_dir):
print(" [*] Reading checkpoint...")
model_dir = "%s_%s" % (self.dataset_dir, self.image_size)
checkpoint_dir = os.path.join(checkpoint_dir, model_dir)
ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
if ckpt and ckpt.model_checkpoint_path:
ckpt_name = os.path.basename(ckpt.model_checkpoint_path)
self.saver.restore(self.sess, os.path.join(checkpoint_dir, ckpt_name))
return True
else:
return False
def sample_model(self, sample_dir, epoch, idx):
data_cover = glob('./datasets/{}/*.*'.format(self.dataset_dir + '/test_cover'))
data_message = glob('./datasets/{}/*.*'.format(self.dataset_dir + '/test_message'))
np.random.shuffle(data_cover)
np.random.shuffle(data_message)
batch_files = list(zip(data_cover[:self.batch_size], data_message[:self.batch_size]))
sample_images,_ =load_train_data(batch_files[0],is_testing=True)
sample_images=[sample_images]
sample_images = np.array(sample_images).astype(np.float32)
fake_stegano,rec_cover,rec_message = self.sess.run(
[self.fake_stegano,self.recon_cover,self.recon_message],
feed_dict={self.real_data: sample_images}
)
real_cover = sample_images[:, :, :, :self.input_c_dim]
real_message = sample_images[:, :, :, self.input_c_dim:self.input_c_dim*2]
weighted = sample_images[:, :, :, self.input_c_dim*2:self.input_c_dim*3]
merge = np.concatenate([real_cover,real_message,weighted, fake_stegano,rec_cover,rec_message], axis=2)
check_folder('./{}/{:02d}'.format(sample_dir, epoch))
save_images(merge, [self.batch_size, 1],
'./{}/{:02d}/{:04d}.jpg'.format(sample_dir, epoch, idx))
def test(self, args):
"""Test cyclegan"""
init_op = tf.global_variables_initializer()
self.sess.run(init_op)
if self.load(args.checkpoint_dir):
print(" [*] Load SUCCESS")
else:
print(" [!] Load failed...")
data_cover = glob('./datasets/{}/*.*'.format(self.dataset_dir + '/test_cover'))
data_message = glob('./datasets/{}/*.*'.format(self.dataset_dir + '/test_message'))
for sample_file in data_message:
print('Processing image: ' + sample_file)
random_idx=np.random.randint(0,len(data_cover))
cover_path=data_cover[random_idx]
sample_image = [load_test_data(cover_path,sample_file, args.fine_size)]
sample_image = np.array(sample_image).astype(np.float32)
jpg_name=os.path.basename(sample_file)
image_path = os.path.join(args.test_dir,'{0}_{1}'.format("merge",jpg_name[:-4]+".png" ))
test_A,test_B,fake_img,recon_cover,recon_message = self.sess.run([self.test_cover,self.test_message,self.test_stega,self.test_cover_recon,self.test_message_recon],
feed_dict={self.test_cover: sample_image[:,:,:,:3],self.test_message:sample_image[:,:,:,3:6]})
merge=np.concatenate([test_A,test_B,fake_img,recon_cover,recon_message],axis=2)
save_images(merge, [1, 1], image_path)
split_path = os.path.join(args.test_dir, jpg_name[:-4] + ".png")
save_images(fake_img, [1, 1], split_path)
def test_reverse(self, args):
"""Test cyclegan"""
init_op = tf.global_variables_initializer()
self.sess.run(init_op)
if self.load(args.checkpoint_dir):
print(" [*] Load SUCCESS")
else:
print(" [!] Load failed...")
data_stegano = glob('{}/*.*'.format(args.stegano_dir))
for sample_file in data_stegano:
print('Processing image: '+sample_file)
sample_image = [load_reverse_data( sample_file, args.fine_size)]
sample_image = np.array(sample_image).astype(np.float32)
jpg_name = os.path.basename(sample_file)
image_path = os.path.join(args.recon_dir, '{}'.format(jpg_name[:-4] + ".png"))
recon_cover,recon_message = self.sess.run(
[self.test_cover_recon,self.test_message_recon],
feed_dict={self.test_stega: sample_image})
merge = np.concatenate([recon_cover,recon_message], axis=2)
save_images(merge, [1, 1], image_path)