forked from lmb-freiburg/demon
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluation.py
327 lines (255 loc) · 13 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
#
# This script computes the depth and motion errors for the network predictions.
#
# Note that numbers are not identical to the values reported in the paper, due
# to implementation differences between the caffe and tensorflow version.
#
# Running this script requires about 4gb of disk space.
#
# This script expects the test datasets in the folder ../datasets
# Use the provided script in ../datasets for downloading the data.
#
import os
import sys
import json
import h5py
import xarray
import numpy as np
import lmbspecialops as sops
import tensorflow as tf
examples_dir = os.path.dirname(__file__)
weights_dir = os.path.join(examples_dir,'..','weights')
sys.path.insert(0, os.path.join(examples_dir, '..', 'python'))
from depthmotionnet.datareader import *
from depthmotionnet.networks_original import *
from depthmotionnet.helpers import convert_NCHW_to_NHWC, convert_NHWC_to_NCHW
from depthmotionnet.evaluation import *
def create_ground_truth_file(dataset, dataset_dir):
"""Creates a hdf5 file with the ground truth test data
dataset: str
name of the dataset
dataset_dir: str
path to the directory containing the datasets
Returns the path to the created file
"""
ds = dataset
# destination file
ground_truth_file = '{0}_ground_truth.h5'.format(ds)
if os.path.isfile(ground_truth_file):
return ground_truth_file # skip existing files
print('creating {0}'.format(ground_truth_file))
# data types requested from the reader op
data_tensors_keys = ('IMAGE_PAIR', 'MOTION', 'DEPTH', 'INTRINSICS')
reader_params = {
'batch_size': 1,
'test_phase': True, # deactivates randomization
'builder_threads': 1, # must be 1 in test phase
'inverse_depth': True,
'motion_format': 'ANGLEAXIS6',
# True is also possible here. If set to True we store ground truth with
# precomputed normalization. False keeps the original information.
'norm_trans_scale_depth': False,
# original data resolution
'scaled_height': 480,
'scaled_width': 640,
'scene_pool_size': 5,
# no augmentation
'augment_rot180': 0,
'augment_mirror_x': 0,
'top_output': data_tensors_keys,
'source': [{'path': os.path.join(dataset_dir,'{0}_test.h5'.format(ds))}],
}
reader_tensors = multi_vi_h5_data_reader(len(data_tensors_keys), json.dumps(reader_params))
# create a dict to make the distinct data tensors accessible via keys
data_dict = dict(zip(data_tensors_keys,reader_tensors[2]))
info_tensor = reader_tensors[0]
sample_ids_tensor = reader_tensors[1]
rotation_tensor, translation_tensor = tf.split(data_dict['MOTION'], 2, axis=1)
flow_tensor = sops.depth_to_flow(data_dict['DEPTH'], data_dict['INTRINSICS'], rotation_tensor, translation_tensor, inverse_depth=True, normalize_flow=True)
gpu_options = tf.GPUOptions()
gpu_options.per_process_gpu_memory_fraction=0.8 # leave some memory to other processes
session = tf.InteractiveSession(config=tf.ConfigProto(allow_soft_placement=True, gpu_options=gpu_options))
fetch_dict = {'INFO': info_tensor, 'SAMPLE_IDS': sample_ids_tensor, 'FLOW': flow_tensor}
fetch_dict.update(data_dict)
with h5py.File(ground_truth_file) as f:
number_of_test_iterations = 1 # will be set to the correct value in the while loop
iteration = 0
while iteration < number_of_test_iterations:
data = session.run(fetch_dict)
# get number of iterations from the info vector
number_of_test_iterations = int(data['INFO'][0])
# write ground truth data to the file
group = f.require_group(str(iteration))
group['image_pair'] = data['IMAGE_PAIR'][0]
group['depth'] = data['DEPTH'][0]
group['motion'] = data['MOTION'][0]
group['flow'] = data['FLOW'][0]
group['intrinsics'] = data['INTRINSICS'][0]
# save sample id as attribute of the group.
# the evaluation code will use this to check if prediction and ground truth match.
sample_id = (''.join(map(chr, data['SAMPLE_IDS']))).strip()
group.attrs['sample_id'] = np.string_(sample_id)
iteration += 1
del session
tf.reset_default_graph()
return ground_truth_file
def create_prediction_file(dataset, dataset_dir):
"""Creates a hdf5 file with the predictions
dataset: str
name of the dataset
dataset_dir: str
path to the directory containing the datasets
Returns the path to the created file
"""
if tf.test.is_gpu_available(True):
data_format='channels_first'
else: # running on cpu requires channels_last data format
data_format='channels_last'
print('Using data_format "{0}"'.format(data_format))
ds = dataset
# destination file
prediction_file = '{0}_prediction.h5'.format(ds)
# data types requested from the reader op
data_tensors_keys = ('IMAGE_PAIR', 'MOTION', 'DEPTH', 'INTRINSICS')
reader_params = {
'batch_size': 1,
'test_phase': True, # deactivates randomization
'builder_threads': 1, # must be 1 in test phase
'inverse_depth': True,
'motion_format': 'ANGLEAXIS6',
'norm_trans_scale_depth': True,
# inpu resolution for demon
'scaled_height': 192,
'scaled_width': 256,
'scene_pool_size': 5,
# no augmentation
'augment_rot180': 0,
'augment_mirror_x': 0,
'top_output': data_tensors_keys,
'source': [{'path': os.path.join(dataset_dir,'{0}_test.h5'.format(ds))}],
}
reader_tensors = multi_vi_h5_data_reader(len(data_tensors_keys), json.dumps(reader_params))
# create a dict to make the distinct data tensors accessible via keys
data_dict = dict(zip(data_tensors_keys,reader_tensors[2]))
info_tensor = reader_tensors[0]
sample_ids_tensor = reader_tensors[1]
image1, image2 = tf.split(data_dict['IMAGE_PAIR'],2,axis=1)
# downsample second image
image2_2 = sops.median3x3_downsample(sops.median3x3_downsample(image2))
gpu_options = tf.GPUOptions()
gpu_options.per_process_gpu_memory_fraction=0.8 # leave some memory to other processes
session = tf.InteractiveSession(config=tf.ConfigProto(allow_soft_placement=True, gpu_options=gpu_options))
# init networks
bootstrap_net = BootstrapNet(session, data_format)
iterative_net = IterativeNet(session, data_format)
refine_net = RefinementNet(session, data_format)
session.run(tf.global_variables_initializer())
# load weights
saver = tf.train.Saver()
saver.restore(session,os.path.join(weights_dir,'demon_original'))
fetch_dict = {
'INFO': info_tensor,
'SAMPLE_IDS': sample_ids_tensor,
'image1': image1,
'image2_2': image2_2,
}
fetch_dict.update(data_dict)
if data_format == 'channels_last':
for k in ('image1', 'image2_2', 'IMAGE_PAIR',):
fetch_dict[k] = convert_NCHW_to_NHWC(fetch_dict[k])
with h5py.File(prediction_file, 'w') as f:
number_of_test_iterations = 1 # will be set to the correct value in the while loop
test_iteration = 0
while test_iteration < number_of_test_iterations:
data = session.run(fetch_dict)
# get number of iterations from the info vector
number_of_test_iterations = int(data['INFO'][0])
# create group for the current test sample and save the sample id.
group = f.require_group('snapshot_1/{0}'.format(test_iteration))
sample_id = (''.join(map(chr, data['SAMPLE_IDS']))).strip()
group.attrs['sample_id'] = np.string_(sample_id)
# save intrinsics
group['intrinsics'] = data['INTRINSICS']
# run the network and save outputs for each network iteration 'i'.
# iteration 0 corresponds to the bootstrap network.
# we also store the refined depth for each iteration.
for i in range(4):
if i == 0:
result = bootstrap_net.eval(data['IMAGE_PAIR'], data['image2_2'])
else:
result = iterative_net.eval(
data['IMAGE_PAIR'],
data['image2_2'],
result['predict_depth2'],
result['predict_normal2'],
result['predict_rotation'],
result['predict_translation']
)
# write predictions
if data_format == 'channels_last':
group['predicted_flow/{0}'.format(i)] = result['predict_flow2'][0].transpose([2,0,1])
group['predicted_depth/{0}'.format(i)] = result['predict_depth2'][0,:,:,0]
else:
group['predicted_flow/{0}'.format(i)] = result['predict_flow2'][0]
group['predicted_depth/{0}'.format(i)] = result['predict_depth2'][0,0]
predict_motion = np.concatenate((result['predict_rotation'],result['predict_translation']),axis=1)
group['predicted_motion/{0}'.format(i)] = predict_motion[0]
# run refinement network
result_refined = refine_net.eval(data['image1'],result['predict_depth2'])
# write refined depth prediction
if data_format == 'channels_last':
group['predicted_depth/{0}_refined'.format(i)] = result_refined['predict_depth0'][0,:,:,0]
else:
group['predicted_depth/{0}_refined'.format(i)] = result_refined['predict_depth0'][0,0]
test_iteration += 1
del session
tf.reset_default_graph()
return prediction_file
def main():
# list the test datasets names for evaluation
datasets = ('mvs', 'scenes11', 'rgbd', 'sun3d', 'nyu2')
dataset_dir = os.path.join('..', 'datasets')
# creating the ground truth and prediction files requires about 11gb of disk space
for dataset in datasets:
gt_file = create_ground_truth_file(dataset, dataset_dir)
print('creating predictions for', dataset)
pr_file = create_prediction_file(dataset, dataset_dir)
# compute errors
# the evaluate function expects the path to a prediction and the corresponding
# ground truth file.
print('computing errors for', dataset)
# compute errors for comparison with single image depth methods
eval_result = evaluate(pr_file, gt_file, depthmask=False, eigen_crop_gt_and_pred=True)
# save evaluation results to disk
write_xarray_json(eval_result, '{0}_eval_crop_allpix.json'.format(dataset))
if dataset != 'nyu2':
# depthmask=True will compute depth errors only for pixels visible in both images.
eval_result = evaluate(pr_file, gt_file, depthmask=True)
# save evaluation results to disk
write_xarray_json(eval_result, '{0}_eval.json'.format(dataset))
# print errors
for dataset in datasets:
# In the following eval_result is a 5D array with the following dimensions:
# - snapshots: stores results of different network training states
# - iteration: network iterations '0' stores the result of the bootstrap network.
# '3' stores the results after bootstrap + 3 times iterative network.
# '3_refined' stores the result after the refinement network.
# - sample: the sample number.
# - errors: stores the different error metrics.
# - scaled: is a boolean dimension used for storing errors after optimal scaling
# the prediction with a scalar factor. This was meant as an alternative
# to scale invariant error measures. Just set this to False and ignore.
#
# The following prints the error metrics as used in the paper.
depth_errors = ['depth_l1_inverse','depth_scale_invariant','depth_abs_relative']
motion_errors = ['rot_err','tran_angle_err']
print('======================================')
print('dataset: ', dataset)
if dataset != 'nyu2':
eval_result = read_xarray_json('{0}_eval.json'.format(dataset))
print(' depth', eval_result[0].loc['3_refined',:,depth_errors,False].mean('sample').to_pandas().to_string())
print(' motion', eval_result[0].loc['3',:,motion_errors,False].mean('sample').to_pandas().to_string())
eval_result = read_xarray_json('{0}_eval_crop_allpix.json'.format(dataset))
print(' depth cropped+all pixels', eval_result[0].loc['3_refined',:,['depth_scale_invariant'],False].mean('sample').to_pandas().to_string())
if __name__ == "__main__":
main()