Given an array nums
of size n
, return the majority element.
The majority element is the element that appears more than ⌊n / 2⌋
times. You may assume that the majority element always exists in the array.
Example 1:
Input: nums = [3,2,3] Output: 3
Example 2:
Input: nums = [2,2,1,1,1,2,2] Output: 2
Constraints:
n == nums.length
1 <= n <= 5 * 104
-231 <= nums[i] <= 231 - 1
Follow-up: Could you solve the problem in linear time and in
O(1)
space?
class Solution:
def majorityElement(self, nums: List[int]) -> int:
cnt = major = 0
for num in nums:
if cnt == 0:
major = num
cnt = 1
else:
cnt += (1 if major == num else -1)
return major
class Solution {
public int majorityElement(int[] nums) {
int cnt = 0, major = 0;
for (int num : nums) {
if (cnt == 0) {
major = num;
cnt = 1;
} else {
cnt += (major == num ? 1 : -1);
}
}
return major;
}
}
/**
* @param {number[]} nums
* @return {number}
*/
var majorityElement = function (nums) {
let cnt = 0;
let major = 0;
for (const num of nums) {
if (cnt == 0) {
major = num;
cnt = 1;
} else {
cnt += major == num ? 1 : -1;
}
}
return major;
};
class Solution {
public:
int majorityElement(vector<int>& nums) {
int cnt = 0, major = 0;
for (int num : nums) {
if (cnt == 0) {
major = num;
cnt = 1;
} else {
cnt += (major == num ? 1 : -1);
}
}
return major;
}
};
public class Solution {
public int MajorityElement(int[] nums) {
int cnt = 0, major = 0;
foreach (int num in nums)
{
if (cnt == 0)
{
major = num;
cnt = 1;
}
else
{
cnt += (major == num ? 1 : -1);
}
}
return major;
}
}
func majorityElement(nums []int) int {
var cnt, major int
for _, num := range nums {
if cnt == 0 {
major = num
cnt = 1
} else {
if major == num {
cnt++
} else {
cnt--
}
}
}
return major
}
impl Solution {
pub fn majority_element(nums: Vec<i32>) -> i32 {
let mut major = 0;
let mut cnt = 0;
for &num in nums.iter() {
if cnt == 0 {
major = num;
cnt = 1;
} else {
cnt += if major == num { 1 } else { -1 };
}
}
major
}
}