A peak element is an element that is strictly greater than its neighbors.
Given an integer array nums
, find a peak element, and return its index. If the array contains multiple peaks, return the index to any of the peaks.
You may imagine that nums[-1] = nums[n] = -∞
.
Example 1:
Input: nums = [1,2,3,1] Output: 2 Explanation: 3 is a peak element and your function should return the index number 2.
Example 2:
Input: nums = [1,2,1,3,5,6,4] Output: 5 Explanation: Your function can return either index number 1 where the peak element is 2, or index number 5 where the peak element is 6.
Constraints:
1 <= nums.length <= 1000
-231 <= nums[i] <= 231 - 1
nums[i] != nums[i + 1]
for all validi
.
Follow up: Could you implement a solution with logarithmic complexity?
Binary search.
class Solution:
def findPeakElement(self, nums: List[int]) -> int:
left, right = 0, len(nums) - 1
while left < right:
mid = (left + right) >> 1
if nums[mid] > nums[mid + 1]:
right = mid
else:
left = mid + 1
return left
class Solution {
public int findPeakElement(int[] nums) {
int left = 0, right = nums.length - 1;
while (left < right) {
int mid = (left + right) >> 1;
if (nums[mid] > nums[mid + 1]) {
right = mid;
} else {
left = mid + 1;
}
}
return left;
}
}
function findPeakElement(nums: number[]): number {
let left = 0,
right = nums.length - 1;
while (left < right) {
let mid: number = (left + right) >> 1;
if (nums[mid] <= nums[mid + 1]) {
left = mid + 1;
} else {
right = mid;
}
}
return left;
}
func findPeakElement(nums []int) int {
left, right := 0, len(nums)-1
for left < right {
mid := (left + right) >> 1
if nums[mid] > nums[mid+1] {
right = mid
} else {
left = mid + 1
}
}
return left
}
class Solution {
public:
int findPeakElement(vector<int>& nums) {
int left = 0, right = nums.size() - 1;
while (left < right) {
int mid = left + right >> 1;
if (nums[mid] > nums[mid + 1]) {
right = mid;
} else {
left = mid + 1;
}
}
return left;
}
};