-
Notifications
You must be signed in to change notification settings - Fork 31
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
No such file or directory lvis_v0.5_val_cocofied.json #40
Comments
You should make sure that you download the lvis0.5 dataset. |
您好,我想问下,我使用类似coco数据集格式的时候,在验证的时候,为什么会提示我找不到lvis_v0.5_val_cocofied.json?
Traceback (most recent call last):
File "tools/train.py", line 153, in
main()
File "tools/train.py", line 142, in main
train_detector(
File "/home/lvshuzhou/RefineMask-main/mmdet/apis/train.py", line 143, in train_detector
runner.run(data_loaders, cfg.workflow, cfg.total_epochs)
File "/home/lvshuzhou/RefineMask-main/mmcv-1.0.5/mmcv/runner/epoch_based_runner.py", line 122, in run
epoch_runner(data_loaders[i], **kwargs)
File "/home/lvshuzhou/RefineMask-main/mmcv-1.0.5/mmcv/runner/epoch_based_runner.py", line 46, in train
self.call_hook('after_train_epoch')
File "/home/lvshuzhou/RefineMask-main/mmcv-1.0.5/mmcv/runner/base_runner.py", line 298, in call_hook
getattr(hook, fn_name)(self)
File "/home/lvshuzhou/RefineMask-main/mmdet/core/evaluation/eval_hooks.py", line 28, in after_train_epoch
self.evaluate(runner, results)
File "/home/lvshuzhou/RefineMask-main/mmdet/core/evaluation/eval_hooks.py", line 31, in evaluate
eval_res = self.dataloader.dataset.evaluate(
File "/home/lvshuzhou/RefineMask-main/mmdet/datasets/coco.py", line 575, in evaluate
self.eval_cocofied_lvis_result(
File "/home/lvshuzhou/RefineMask-main/mmdet/datasets/coco.py", line 673, in eval_cocofied_lvis_result
lvis_gt = LVIS(gt_file)
File "/home/lvshuzhou/anaconda3/envs/refinemask/lib/python3.8/site-packages/lvis/lvis.py", line 27, in init
self.dataset = self._load_json(annotation_path)
File "/home/lvshuzhou/anaconda3/envs/refinemask/lib/python3.8/site-packages/lvis/lvis.py", line 35, in _load_json
with open(path, 'r') as f:
FileNotFoundError: [Errno 2] No such file or directory: '/home/data/lsz/dataset/instance_version/annotations/lvis_v0.5_val_cocofied.json'
这是我的配置文件
model = dict(
type='MaskRCNN',
pretrained='torchvision://resnet50',
backbone=dict(
type='ResNet',
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=True,
style='pytorch'),
neck=dict(
type='FPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
num_outs=5),
rpn_head=dict(
type='RPNHead',
in_channels=256,
feat_channels=256,
anchor_generator=dict(
type='AnchorGenerator',
scales=[8],
ratios=[0.5, 1.0, 2.0],
strides=[4, 8, 16, 32, 64]),
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[0.0, 0.0, 0.0, 0.0],
target_stds=[1.0, 1.0, 1.0, 1.0]),
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
roi_head=dict(
type='RefineRoIHead',
bbox_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
out_channels=256,
featmap_strides=[4, 8, 16, 32]),
bbox_head=dict(
type='Shared2FCBBoxHead',
in_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=22,
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[0.0, 0.0, 0.0, 0.0],
target_stds=[0.1, 0.1, 0.2, 0.2]),
reg_class_agnostic=False,
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=2.0),
loss_bbox=dict(type='L1Loss', loss_weight=2.0)),
mask_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0),
out_channels=256,
featmap_strides=[4, 8, 16, 32]),
mask_head=dict(
type='RefineMaskHead',
num_convs_instance=2,
num_convs_semantic=4,
conv_in_channels_instance=256,
conv_in_channels_semantic=256,
conv_kernel_size_instance=3,
conv_kernel_size_semantic=3,
conv_out_channels_instance=256,
conv_out_channels_semantic=256,
conv_cfg=None,
norm_cfg=None,
dilations=[1, 3, 5],
semantic_out_stride=4,
mask_use_sigmoid=True,
stage_num_classes=[22, 22, 22, 22],
stage_sup_size=[14, 28, 56, 112],
upsample_cfg=dict(type='bilinear', scale_factor=2),
loss_cfg=dict(
type='RefineCrossEntropyLoss',
stage_instance_loss_weight=[0.25, 0.5, 0.75, 1.0],
semantic_loss_weight=1.0,
boundary_width=2,
start_stage=1))))
train_cfg = dict(
rpn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.3,
min_pos_iou=0.3,
match_low_quality=True,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=256,
pos_fraction=0.5,
neg_pos_ub=-1,
add_gt_as_proposals=False),
allowed_border=-1,
pos_weight=-1,
debug=False),
rpn_proposal=dict(
nms_across_levels=False,
nms_pre=2000,
nms_post=1000,
max_num=1000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.5,
min_pos_iou=0.5,
match_low_quality=True,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True),
mask_size=28,
pos_weight=-1,
debug=False))
test_cfg = dict(
rpn=dict(
nms_across_levels=False,
nms_pre=1000,
nms_post=1000,
max_num=1000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=dict(
score_thr=0.05,
nms=dict(type='nms', iou_threshold=0.5),
max_per_img=100,
mask_thr_binary=0.5))
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='LoadAnnotations',
with_bbox=True,
with_mask=True,
poly2mask=False),
dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks'])
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
]
data_root = '/home/data/lsz/dataset/instance_version' # change this to your own path
data = dict(
samples_per_gpu=2,
workers_per_gpu=1,
train=dict(
type='CocoDataset',
ann_file='instances_train_trashcan.json',
img_prefix='train/',
pipeline=[
dict(type='LoadImageFromFile'),
dict(
type='LoadAnnotations',
with_bbox=True,
with_mask=True,
poly2mask=False),
dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(
type='Collect',
keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks'])
],
data_root=data_root),
val=dict(
type='CocoDataset',
ann_file='instances_val_trashcan.json',
img_prefix='val/',
pipeline=[
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
],
data_root=data_root),
test=dict(
type='CocoDataset',
ann_file='instances_val_trashcan.json',
img_prefix='val/',
pipeline=[
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
],
data_root=data_root))
evaluation = dict(metric=['bbox', 'segm'], classwise=True, interval=1)
optimizer = dict(type='SGD', lr=0.001, momentum=0.9, weight_decay=0.0001)
optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
total_epochs = 12
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=0.0001,
step=[8, 11])
checkpoint_config = dict(interval=1)
log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook')])
dist_params = dict(backend='nccl')
log_level = 'INFO'
workflow = [('train', 1)]
gpu_ids = range(0, 1)
work_dir = None
load_from = None
resume_from = None
The text was updated successfully, but these errors were encountered: