-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
121 lines (110 loc) · 6.03 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
# -*-coding:utf-8 -*-
import random
import argparse
import os
import json
import torch.backends.cudnn as cudnn
import torch.nn.parallel
import models.imagenet as customized_models
import torchvision.models as models
from solver import run, load_model, submit
from pprint import pprint
import pickle
# Models
# name中若为小写且不以‘——’开头,则对其进行升序排列,callable功能为判断返回对象是否可调用(即某种功能)。
# default_model_names中为Pytorch官方模型,可以加载预训练权重;而customized_models_names为自定义模型,不能加载预训练权重。
default_model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
customized_models_names = sorted(name for name in customized_models.__dict__
if name.islower() and not name.startswith("__")
and callable(customized_models.__dict__[name]))
model_names = default_model_names + customized_models_names
print('Model can use pre-training weights:{}'.format(default_model_names))
print('Model cannot use pre-training weights:{}'.format(customized_models_names))
use_paras = False
if use_paras:
with open('./checkpoint/' + "params.json", 'r', encoding='utf-8') as json_file:
state = json.load(json_file)
json_file.close()
else:
# Parse arguments
parser = argparse.ArgumentParser(description='PyTorch Rssrai Training')
# Datasets
parser.add_argument('--train_path', help='path to train dataset', default='./datasets/train', type=str)
parser.add_argument('--val_path', help='path to val dataset', default='./datasets/val', type=str)
parser.add_argument('--test_path', help='path to test dataset', default='./datasets/test', type=str)
parser.add_argument('-s', '--image_size', help='the size of the model input', default=224, type=int)
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
# Optimization options
parser.add_argument('--epochs', default=100, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('--train_batch', default=32, type=int, metavar='N',
help='train batchsize (default: 32)')
parser.add_argument('--val_batch', default=32, type=int, metavar='N',
help='val batchsize (default: 32)')
parser.add_argument('--lr', '--learning-rate', default=0.001, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--drop', '--dropout', default=0.5, type=float,
metavar='Dropout', help='Dropout ratio')
parser.add_argument('--schedule', type=int, nargs='+', default=[20, 40, 60, 80],
help='Decrease learning rate at these epochs.')
parser.add_argument('--gamma', type=float, default=0.5, help='LR is multiplied by gamma on schedule.')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)')
# Checkpoints
parser.add_argument('-c', '--checkpoint', default='checkpoint', type=str, metavar='PATH',
help='path to save checkpoint (default: checkpoint)')
parser.add_argument('--resume', default='checkpoint/model_best.pth.tar', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
# Architecture
parser.add_argument('--pretrained', dest='pretrained', action='store_true', default=True,
help='use pre-trained model') # dest是存储的变量
parser.add_argument('--arch', '-a', metavar='ARCH', default='se_resnext152',
choices=model_names,
help='model architecture: ' +
' | '.join(model_names) +
' (default: resnet18)')
parser.add_argument('--num-classes', type=int, help='the number of classes', default=45)
parser.add_argument('--depth', type=int, default=29, help='Model depth.')
parser.add_argument('--cardinality', type=int, default=32, help='ResNet cardinality (group).')
parser.add_argument('--base-width', type=int, default=4, help='ResNet base width.')
parser.add_argument('--widen-factor', type=int, default=4, help='Widen factor. 4 -> 64, 8 -> 128, ...')
# Miscs
parser.add_argument('--manualSeed', type=int, help='manual seed')
# Device options
parser.add_argument('--gpu_id', type=str, default='0',
help='For example 0,1 to run on two GPUs')
args = parser.parse_args()
state = {k: v for k, v in args._get_kwargs()}
pprint(state)
if not os.path.exists(state['checkpoint']):
os.makedirs(state['checkpoint'])
with open(state['checkpoint'] + '/params.json', 'w') as json_file:
json.dump(vars(args), json_file, ensure_ascii=False)
json_file.close()
# cuda设置
use_cuda = torch.cuda.is_available()
cudnn.benchmark = True
if len(state['gpu_id']) > 1:
gpu_id = list(map(int, state['gpu_id'].split(',')))
else:
gpu_id = None
os.environ['CUDA_VISIBLE_DEVICES'] = state['gpu_id']
# Random seed
if state['manualSeed'] is None:
state['manualSeed'] = random.randint(1, 10000)
random.seed(state['manualSeed'])
torch.manual_seed(state['manualSeed'])
if use_cuda:
torch.cuda.manual_seed_all(state['manualSeed'])
if __name__ == '__main__':
mean, std = [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]
model = load_model(state, default_model_names, customized_models_names, use_cuda)
run(state, model, mean, std, use_cuda)
submit(model, state, use_cuda, mean, std)