-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_nn_optimizer.py
72 lines (65 loc) · 2.55 KB
/
test_nn_optimizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Linear, Sequential
from torch.nn.modules.flatten import Flatten
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
dataset = torchvision.datasets.CIFAR10("torchvision_dataset", train=False,
transform=torchvision.transforms.ToTensor(), download=True)
dataLoader = DataLoader(dataset, batch_size=1)
class Tudui(nn.Module):
def __init__(self):
super(Tudui, self).__init__()
# padding = 2 是对着公式算出来的,其他几个参数的设置按照网上给的结构对着抄
self.conv1 = Conv2d(in_channels=3, out_channels=32, kernel_size=5, padding=2)
self.maxpool1 = MaxPool2d(kernel_size=2)
self.conv2 = Conv2d(in_channels=32, out_channels=32 ,kernel_size=5, padding=2)
self.maxpool2 = MaxPool2d(kernel_size=2)
self.conv3 = Conv2d(in_channels=32, out_channels=64, kernel_size=5, padding=2)
self.maxpool3 = MaxPool2d(kernel_size=2)
self.flatten = Flatten()
self.linear1 = Linear(1024, 64)
self.linear2 = Linear(64, 10)
# 将以上换成sequential写法:
self.model1 = Sequential(
Conv2d(in_channels=3, out_channels=32, kernel_size=5, padding=2),
MaxPool2d(kernel_size=2),
Conv2d(in_channels=32, out_channels=32, kernel_size=5, padding=2),
MaxPool2d(kernel_size=2),
Conv2d(in_channels=32, out_channels=64, kernel_size=5, padding=2),
MaxPool2d(kernel_size=2),
Flatten(),
Linear(1024, 64),
Linear(64, 10),
)
def forward(self, x):
# #冗余写法
# x = self.conv1(x)
# x = self.maxpool1(x)
# x = self.conv2(x)
# x = self.maxpool2(x)
# x = self.conv3(x)
# x = self.maxpool3(x)
# x = self.flatten(x)
# x = self.linear1(x)
# x = self.linear2(x)
# seq写法
x = self.model1(x)
return x
loss =nn.CrossEntropyLoss()
tudui = Tudui()
optimizer = torch.optim.SGD(tudui.parameters(), lr=0.01)
for epoch in range(20):
running_loss = 0.0
for data in dataLoader:
imgs, targets = data
outputs = tudui(imgs)
result_loss = loss(outputs, targets)
# 每次优化前,调0优化器已存过的数字
optimizer.zero_grad()
result_loss.backward()
#优化器优化
optimizer.step()
running_loss = running_loss +result_loss
print(running_loss)