-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathresnetc2d.py
304 lines (257 loc) · 11.5 KB
/
resnetc2d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
"""ResNet in PyTorch.
ImageNet-Style ResNet
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
Deep Residual Learning for Image Recognition. arXiv:1512.03385
Adapted from: https://github.com/bearpaw/pytorch-classification
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_planes, planes, stride=1, is_last=False):
super(BasicBlock, self).__init__()
self.is_last = is_last
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion * planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion * planes)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
preact = out
out = F.relu(out)
if self.is_last:
return out, preact
else:
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, in_planes, planes, stride=1, is_last=False):
super(Bottleneck, self).__init__()
self.is_last = is_last
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, self.expansion * planes, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(self.expansion * planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion * planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion * planes)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = F.relu(self.bn2(self.conv2(out)))
out = self.bn3(self.conv3(out))
out += self.shortcut(x)
preact = out
out = F.relu(out)
if self.is_last:
return out, preact
else:
return out
class DiversificationBlock(nn.Module):
def __init__(self, pk=0.5, r=3, c=4):
super(DiversificationBlock, self).__init__()
self.pk = pk
self.r = r
self.c = c
def forward(self, feature_maps):
def helperb1(feature_map):
row, col = torch.where(feature_map == torch.max(feature_map))
b1 = torch.zeros_like(feature_map)
for i in range(len(row)):
r, c = int(row[i]), int(col[i])
b1[r, c] = 1
return b1
def from_num_to_block(mat, r, c, num):
assert len(mat.shape) == 2, ValueError("Feature map shape is wrong!")
res = np.zeros_like(mat)
row, col = mat.shape
block_r, block_c = int(row / r), int(col / c)
index = np.arange(r * c) + 1
index = index.reshape(r, c)
index_r, index_c = np.argwhere(index == num)[0]
if index_c + 1 == c:
end_c = c + 1
else:
end_c = (index_c + 1) * block_c
if index_r + 1 == r:
end_r = r + 1
else:
end_r = (index_r + 1) * block_r
res[index_r * block_r: end_r, index_c * block_c:end_c] = 1
return res
if len(feature_maps.shape) == 3:
resb1 = []
resb2 = []
feature_maps_list = torch.split(feature_maps, 1)
for feature_map in feature_maps_list:
feature_map = feature_map.squeeze()
tmp = helperb1(feature_map)
resb1.append(tmp)
tmp1 = from_num_to_block(feature_map, self.r, self.c, 3)
resb2.append(tmp1)
elif len(feature_maps.shape) == 2:
tmp = helperb1(feature_maps)
tmp1 = from_num_to_block(feature_maps, self.r, self.c, 3)
resb1 = [tmp]
resb2 = [tmp1]
else:
raise ValueError
res = [np.clip(resb1[x].numpy() + resb2[x], 0, 1) for x in range(len(resb1))]
return res
class ResNet(nn.Module):
def __init__(self, block, num_blocks, in_channel=3, zero_init_residual=False, pool=False):
super(ResNet, self).__init__()
self.in_planes = 64
if pool:
self.conv1 = nn.Conv2d(in_channel, 64, kernel_size=7, stride=2, padding=3, bias=False)
else:
self.conv1 = nn.Conv2d(in_channel, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) if pool else nn.Identity()
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.dropblock = DiversificationBlock()
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
# Zero-initialize the last BN in each residual branch,
# so that the residual branch starts with zeros, and each residual block behaves
# like an identity. This improves the model by 0.2~0.3% according to:
# https://arxiv.org/abs/1706.02677
if zero_init_residual:
for m in self.modules():
if isinstance(m, Bottleneck):
nn.init.constant_(m.bn3.weight, 0)
elif isinstance(m, BasicBlock):
nn.init.constant_(m.bn2.weight, 0)
def _make_layer(self, block, planes, num_blocks, stride):
strides = [stride] + [1] * (num_blocks - 1)
layers = []
for i in range(num_blocks):
stride = strides[i]
layers.append(block(self.in_planes, planes, stride))
self.in_planes = planes * block.expansion
return nn.Sequential(*layers)
def forward(self, x, layer=100):
out = self.maxpool(F.relu(self.bn1(self.conv1(x))))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
featmap = out
out = self.avgpool(out)
out = torch.flatten(out, 1)
return out, featmap
def resnet18(**kwargs):
return ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
def resnet34(**kwargs):
return ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
def resnet50(**kwargs):
return ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
def resnet101(**kwargs):
return ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)
model_dict = {
'resnet18': [resnet18, 512],
'resnet34': [resnet34, 512],
'resnet50': [resnet50, 2048],
'resnet101': [resnet101, 2048],
}
class LinearBatchNorm(nn.Module):
"""Implements BatchNorm1d by BatchNorm2d, for SyncBN purpose"""
def __init__(self, dim, affine=True):
super(LinearBatchNorm, self).__init__()
self.dim = dim
self.bn = nn.BatchNorm2d(dim, affine=affine)
def forward(self, x):
x = x.view(-1, self.dim, 1, 1)
x = self.bn(x)
x = x.view(-1, self.dim)
return x
class SupConResNet(nn.Module):
"""backbone + projection head"""
def __init__(self, name='resnet50', head='mlp', feat_dim=128, pool=False):
super(SupConResNet, self).__init__()
model_fun, dim_in = model_dict[name]
self.encoder = model_fun(pool=pool)
if head == 'linear':
self.head = nn.Linear(dim_in, feat_dim)
elif head == 'mlp':
self.head = nn.Sequential(
nn.Linear(dim_in, dim_in),
nn.ReLU(inplace=True),
nn.Linear(dim_in, feat_dim)
)
else:
raise NotImplementedError(
'head not supported: {}'.format(head))
def forward(self, x):
featmap, feat = self.encoder(x)
feat = F.normalize(self.head(feat), dim=1)
return feat
class Decoder(nn.Module):
def __init__(self, name='resnet18'):
super(Decoder, self).__init__()
if name=='resnet18':
size = 32
self.layer1 = nn.ConvTranspose2d(in_channels=512, out_channels=256, kernel_size=4, stride=2, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros', device=None, dtype=None)
self.layer2 = nn.ConvTranspose2d(in_channels=256, out_channels=128, kernel_size=6, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros', device=None, dtype=None)
self.layer3 = nn.ConvTranspose2d(in_channels=128, out_channels=3, kernel_size=4, stride=2, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros', device=None, dtype=None)
else:
self.layer1 = nn.ConvTranspose2d(in_channels=2048, out_channels=256, kernel_size=6, stride=3, padding=0, output_padding=1, groups=1, bias=True, dilation=1, padding_mode='zeros', device=None, dtype=None)
self.layer2 = nn.ConvTranspose2d(in_channels=256, out_channels=128, kernel_size=2, stride=3, padding=0, output_padding=1, groups=1, bias=True, dilation=1, padding_mode='zeros', device=None, dtype=None)
self.layer3 = nn.ConvTranspose2d(in_channels=128, out_channels=3, kernel_size=2, stride=3, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros', device=None, dtype=None)
def forward(self, featmap):
featmap = self.layer1(featmap)
featmap = self.layer2(featmap)
featmap = self.layer3(featmap)
return featmap
class SupCEResNet(nn.Module):
"""encoder + classifier"""
def __init__(self, name='resnet50', num_classes=10, pool=False):
super(SupCEResNet, self).__init__()
model_fun, dim_in = model_dict[name]
self.encoder = model_fun(pool=pool)
self.fc = nn.Linear(dim_in, num_classes)
self.name = name
self.recon_module = Decoder(name=name)
def forward(self, x, return_map=False, recon=False):
feat, featmap=self.encoder(x)
score=self.fc(feat)
if recon:
recon_img = self.recon_module(featmap)
return recon_img
if self.name=='resnet50':
if return_map:
return featmap, score
else:
return score
score = F.softmax(score, dim=-1)
return featmap, feat, score
class LinearClassifier(nn.Module):
"""Linear classifier"""
def __init__(self, name='resnet50', num_classes=10):
super(LinearClassifier, self).__init__()
_, feat_dim = model_dict[name]
self.fc = nn.Linear(feat_dim, num_classes)
def forward(self, features):
return self.fc(features)