-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathresnet50.py
134 lines (114 loc) · 4.4 KB
/
resnet50.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import torch.nn as nn
import torch
import math
def resnet50(pretrained=False, **kwargs):
"""Constructs a ResNet-50 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet([3, 4, 6, 3], **kwargs)
if pretrained:
msg = model.load_state_dict(torch.load(model.modelPath), strict=False)
print(msg)
return model
def resnet101(pretrained=False, **kwargs):
"""Constructs a ResNet-101 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet([3, 4, 23, 3], **kwargs)
if pretrained:
model.load_state_dict(torch.load(model.modelPath))
return model
class ResNet(nn.Module):
"""
block: A sub module
"""
def __init__(self, layers, num_classes=1000, model_path="./resnet50-19c8e357.pth"):
super(ResNet, self).__init__()
self.inplanes = 64
self.modelPath = model_path
self.conv1 = nn.Conv2d(3, 64, kernel_size = 7, stride = 2, padding = 3,
bias = False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace = True)
self.maxpool = nn.MaxPool2d(kernel_size = 3, stride = 2, padding = 1)
self.layer1 = self.make_stack(64, layers[0])
self.layer2 = self.make_stack(128, layers[1], stride=2)
self.layer3 = self.make_stack(256, layers[2], stride=2)
self.layer4 = self.make_stack(512, layers[3], stride=2)
self.avgpool = nn.AvgPool2d(7, stride = 1)
self.fc = nn.Linear(512 * Bottleneck.expansion, num_classes)
# initialize parameters
self.init_param()
def init_param(self):
# The following is initialization
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2./n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
n = m.weight.shape[0] * m.weight.shape[1]
m.weight.data.normal_(0, math.sqrt(2./n))
m.bias.data.zero_()
def make_stack(self, planes, blocks, stride = 1):
downsample = None
layers = []
if stride != 1 or self.inplanes != planes * Bottleneck.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * Bottleneck.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * Bottleneck.expansion),
)
layers.append(Bottleneck(self.inplanes, planes, stride, downsample))
self.inplanes = planes * Bottleneck.expansion
for i in range(1, blocks):
layers.append(Bottleneck(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x, returnmap=False):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
featmap = x
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
if returnmap:
return featmap, x
return x
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * 4)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out