-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathyys_start.py
38 lines (33 loc) · 1.43 KB
/
yys_start.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import tensorflow as tf
import yys_connect as adb
import time
# change this as you see fit
image_path = tf.placeholder(tf.string)
image_array = tf.image.convert_image_dtype(
tf.image.decode_png(tf.read_file(image_path), channels=3),
dtype=tf.uint8)
# Loads label file, strips off carriage return
label_lines = [line.rstrip() for line
in tf.gfile.GFile(r"data/retrained_labels.txt")]
# Unpersists graph from file
with tf.gfile.FastGFile(r"data/retrained_graph.pd", 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
_ = tf.import_graph_def(graph_def, name='')
with tf.Session() as sess:
# Feed the image_data as input to the graph and get first prediction
adb.connect_adb()
adb.show_devices()
while True:
print("\n----------------------------------------------")
start = time.time()
image = adb.cap()
softmax_tensor = sess.graph.get_tensor_by_name('final_result:0')
image_test = sess.run([image_array], feed_dict={image_path: image})
predictions = sess.run(softmax_tensor, {'DecodeJpeg:0': image_test[0]})
# Sort to show labels of first prediction in order of confidence
top_k = predictions[0].argsort()[-len(predictions[0]):][::-1]
label = label_lines[top_k[0]]
print("预测图片为:%s(%s)" % (label, adb.Labels[label]))
adb.click(label)
print('耗时: %.3f' % (time.time()-start))