See our project report
./src
- source code./src/starter
- provided starter code from 2019 KiTS Challenge Repository./data
- cases downloaded from kits19/master/data./data_interpolated
- cases downloaded from kits19/interpolated/data./report
- project presentations and report./*.ipynb
- various research notebooks./*.csv
- various data statistics files- Pipeline files:
./prepare_data.py
./pipeline.py
./main_evaluation.py
./main_train.py
- Download data to
./data_interpolated
(Old: Download data to./data
) - Execute
data_exploration
notebook -- generatedata_stats.csv
- Execute
h5_data_preparation
notebook -- generatecrops.csv
andcrops.hdf5
file
virtualenv --python=python3 .env
source .env/bin/activate
pip install requirements.txt
python main_train.py --checkpoint unet.pth
docker run -it -p 9000:9000 -v $(pwd)/runs:/runs tensorflow/tensorflow /bin/bash
tensorboard --logdir=/runs/ --port=9000
or run this command from ./project
:
docker run -d -p 9000:9000 -v $(pwd)/runs:/runs tensorflow/tensorflow /bin/bash -c "tensorboard --logdir=/runs/ --port=9000"
ssh -i ssh-keys/gpu-gc -L 9000:localhost:9000 [email protected]
# Deattach screen
(ctrl-a-d)
# Reattach screen
screen -r