Skip to content

Latest commit

 

History

History
 
 

tfr_enhanced_hifigan

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 

Multi-Scale Sub-Band Constant-Q Transform Discriminator for High-Fedility Vocoder

arXiv demo



This is the official implementation of the paper "Multi-Scale Sub-Band Constant-Q Transform Discriminator for High-Fidelity Vocoder". In this recipe, we will illustrate how to train a high quality HiFi-GAN on LibriTTS, VCTK and LJSpeech via utilizing multiple Time-Frequency-Representation-based Discriminators.

There are four stages in total:

  1. Data preparation
  2. Feature extraction
  3. Training
  4. Inference

NOTE: You need to run every command of this recipe in the Amphion root path:

cd Amphion

1. Data Preparation

Dataset Download

By default, we utilize the three datasets for training: LibriTTS, VCTK and LJSpeech. How to download them is detailed in here.

Configuration

Specify the dataset path in exp_config.json. Note that you can change the dataset list to use your preferred datasets.

"dataset": [
    "ljspeech",
    "vctk",
    "libritts",
],
"dataset_path": {
    // TODO: Fill in your dataset path
    "ljspeech": "[LJSpeech dataset path]",
    "vctk": "[VCTK dataset path]",
    "libritts": "[LibriTTS dataset path]",
},

2. Features Extraction

For HiFiGAN, only the Mel-Spectrogram and the Output Audio are needed for training.

Configuration

Specify the dataset path and the output path for saving the processed data and the training model in exp_config.json:

    // TODO: Fill in the output log path. The default value is "Amphion/ckpts/vocoder"
    "log_dir": "ckpts/vocoder",
    "preprocess": {
        // TODO: Fill in the output data path. The default value is "Amphion/data"
        "processed_dir": "data",
        ...
    },

Run

Run the run.sh as the preproces stage (set --stage 1).

sh egs/vocoder/gan/tfr_enhanced_hifigan/run.sh --stage 1

NOTE: The CUDA_VISIBLE_DEVICES is set as "0" in default. You can change it when running run.sh by specifying such as --gpu "1".

3. Training

Configuration

We provide the default hyparameters in the exp_config.json. They can work on single NVIDIA-24g GPU. You can adjust them based on you GPU machines.

"train": {
    "batch_size": 32,
    ...
}

Run

Run the run.sh as the training stage (set --stage 2). Specify a experimental name to run the following command. The tensorboard logs and checkpoints will be saved in Amphion/ckpts/vocoder/[YourExptName].

sh egs/vocoder/gan/tfr_enhanced_hifigan/run.sh --stage 2 --name [YourExptName]

NOTE: The CUDA_VISIBLE_DEVICES is set as "0" in default. You can change it when running run.sh by specifying such as --gpu "0,1,2,3".

4. Inference

Pretrained Vocoder Download

We trained a HiFiGAN checkpoint with around 685 hours Speech data. The final pretrained checkpoint is released here.

Run

Run the run.sh as the training stage (set --stage 3), we provide three different inference modes, including infer_from_dataset, infer_from_feature, and infer_from audio.

sh egs/vocoder/gan/tfr_enhanced_hifigan/run.sh --stage 3 \
	--infer_mode [Your chosen inference mode] \
	--infer_datasets [Datasets you want to inference, needed when infer_from_dataset] \
	--infer_feature_dir [Your path to your predicted acoustic features, needed when infer_from_feature] \
	--infer_audio_dir [Your path to your audio files, needed when infer_form_audio] \
	--infer_expt_dir Amphion/ckpts/vocoder/[YourExptName] \
	--infer_output_dir Amphion/ckpts/vocoder/[YourExptName]/result \

a. Inference from Dataset

Run the run.sh with specified datasets, here is an example.

sh egs/vocoder/gan/tfr_enhanced_hifigan/run.sh --stage 3 \
	--infer_mode infer_from_dataset \
	--infer_datasets "libritts vctk ljspeech" \
	--infer_expt_dir Amphion/ckpts/vocoder/[YourExptName] \
	--infer_output_dir Amphion/ckpts/vocoder/[YourExptName]/result \

b. Inference from Features

If you want to inference from your generated acoustic features, you should first prepare your acoustic features into the following structure:

 ┣ {infer_feature_dir}
 ┃ ┣ mels
 ┃ ┃ ┣ sample1.npy
 ┃ ┃ ┣ sample2.npy

Then run the run.sh with specificed folder direction, here is an example.

sh egs/vocoder/gan/tfr_enhanced_hifigan/run.sh --stage 3 \
	--infer_mode infer_from_feature \
	--infer_feature_dir [Your path to your predicted acoustic features] \
	--infer_expt_dir Amphion/ckpts/vocoder/[YourExptName] \
	--infer_output_dir Amphion/ckpts/vocoder/[YourExptName]/result \

c. Inference from Audios

If you want to inference from audios for quick analysis synthesis, you should first prepare your audios into the following structure:

 ┣ audios
 ┃ ┣ sample1.wav
 ┃ ┣ sample2.wav

Then run the run.sh with specificed folder direction, here is an example.

sh egs/vocoder/gan/tfr_enhanced_hifigan/run.sh --stage 3 \
	--infer_mode infer_from_audio \
	--infer_audio_dir [Your path to your audio files] \
	--infer_expt_dir Amphion/ckpts/vocoder/[YourExptName] \
	--infer_output_dir Amphion/ckpts/vocoder/[YourExptName]/result \

Citations

@misc{gu2023cqt,
      title={Multi-Scale Sub-Band Constant-Q Transform Discriminator for High-Fidelity Vocoder}, 
      author={Yicheng Gu and Xueyao Zhang and Liumeng Xue and Zhizheng Wu},
      year={2023},
      eprint={2311.14957},
      archivePrefix={arXiv},
      primaryClass={cs.SD}
}