forked from Noltari/pico-uart-bridge
-
Notifications
You must be signed in to change notification settings - Fork 4
/
uart-bridge.c
420 lines (350 loc) · 12.3 KB
/
uart-bridge.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
// SPDX-License-Identifier: MIT
/*
* Copyright 2021 Álvaro Fernández Rojas <[email protected]>
* Cleanup/modifications Copyright 2023 Andrew J. Kroll <xxxajk at gmail>
*
*/
#include <hardware/irq.h>
#include <hardware/structs/sio.h>
#include <hardware/uart.h>
#include <pico/multicore.h>
#include <pico/stdlib.h>
#include <string.h>
#include <tusb.h>
#if !defined(MIN)
#define MIN(a, b) ((a > b) ? b : a)
#endif /* MIN */
#define SYS_LED_ACTIVE 25
#define BUFFER_SIZE 2560
#define LED_TIMEOUT 10
#define UART0_TX 0
#define UART0_RX 1
#define UART0_LED_TX 19 // not used for UDPI
#define UART0_LED_RX 18
#define UART1_TX 4
#define UART1_RX 5
#define UART1_LED_TX 17
#define UART1_LED_RX 16
#define DEF_BIT_RATE 115200
#define DEF_STOP_BITS 1
#define DEF_PARITY 0
#define DEF_DATA_BITS 8
typedef struct {
uart_inst_t * const inst;
uint irq;
void *irq_fn;
uint8_t tx_pin;
uint8_t rx_pin;
uint8_t tx_led;
uint8_t rx_led;
} uart_id_t;
typedef struct {
cdc_line_coding_t usb_lc;
cdc_line_coding_t uart_lc;
mutex_t lc_mtx;
uint8_t uart_buffer[BUFFER_SIZE];
uint32_t uart_pos;
mutex_t uart_mtx;
uint8_t usb_buffer[BUFFER_SIZE];
uint32_t usb_pos;
mutex_t usb_mtx;
volatile uint8_t countdown_LED_TX;
volatile uint8_t countdown_LED_RX;
critical_section_t spinlock_LED_TX;
critical_section_t spinlock_LED_RX;
} uart_data_t;
void uart0_irq_fn(void);
void uart1_irq_fn(void);
const uart_id_t UART_ID[CFG_TUD_CDC] = {
{
.inst = uart0,
.irq = UART0_IRQ,
.irq_fn = &uart0_irq_fn,
.tx_pin = UART0_TX,
.rx_pin = UART0_RX,
.tx_led = UART0_LED_TX,
.rx_led = UART0_LED_RX,
},
{
.inst = uart1,
.irq = UART1_IRQ,
.irq_fn = &uart1_irq_fn,
.tx_pin = UART1_TX,
.rx_pin = UART1_RX,
.tx_led = UART1_LED_TX,
.rx_led = UART1_LED_RX,
}
};
uart_data_t UART_DATA[CFG_TUD_CDC];
struct repeating_timer stimulate;
volatile bool ready = false;
void init_led(uint8_t p) {
gpio_init(p);
gpio_set_dir(p, GPIO_OUT);
gpio_put(p, 0);
}
static inline uint databits_usb2uart(uint8_t data_bits) {
switch(data_bits) {
case 5:
return 5;
case 6:
return 6;
case 7:
return 7;
default:
return 8;
}
}
static inline uart_parity_t parity_usb2uart(uint8_t usb_parity) {
switch(usb_parity) {
case 1:
return UART_PARITY_ODD;
case 2:
return UART_PARITY_EVEN;
default:
return UART_PARITY_NONE;
}
}
static inline uint stopbits_usb2uart(uint8_t stop_bits) {
switch(stop_bits) {
case 2:
return 2;
default:
return 1;
}
}
void update_uart_cfg(uint8_t itf) {
const uart_id_t *ui = &UART_ID[itf];
uart_data_t *ud = &UART_DATA[itf];
mutex_enter_blocking(&ud->lc_mtx);
if(ud->usb_lc.bit_rate != ud->uart_lc.bit_rate) {
uart_set_baudrate(ui->inst, ud->usb_lc.bit_rate);
ud->uart_lc.bit_rate = ud->usb_lc.bit_rate;
}
if((ud->usb_lc.stop_bits != ud->uart_lc.stop_bits) || (ud->usb_lc.parity != ud->uart_lc.parity) || (ud->usb_lc.data_bits != ud->uart_lc.data_bits)) {
uart_set_format(ui->inst, databits_usb2uart(ud->usb_lc.data_bits), stopbits_usb2uart(ud->usb_lc.stop_bits), parity_usb2uart(ud->usb_lc.parity));
ud->uart_lc.data_bits = ud->usb_lc.data_bits;
ud->uart_lc.parity = ud->usb_lc.parity;
ud->uart_lc.stop_bits = ud->usb_lc.stop_bits;
}
mutex_exit(&ud->lc_mtx);
}
void usb_read_bytes(uint8_t itf) {
uart_data_t *ud = &UART_DATA[itf];
uint32_t len = tud_cdc_n_available(itf);
if(len && mutex_try_enter(&ud->usb_mtx, NULL)) {
len = MIN(len, BUFFER_SIZE - ud->usb_pos);
if(len) {
uint32_t count;
count = tud_cdc_n_read(itf, &ud->usb_buffer[ud->usb_pos], len);
ud->usb_pos += count;
}
mutex_exit(&ud->usb_mtx);
}
}
void usb_write_bytes(uint8_t itf) {
uart_data_t *ud = &UART_DATA[itf];
if(ud->uart_pos) {
if(mutex_try_enter(&ud->uart_mtx, NULL)) {
uint32_t count = tud_cdc_n_write(itf, ud->uart_buffer, ud->uart_pos);
// horrible! should use ring buffers!!
if(count < ud->uart_pos) {
memmove(ud->uart_buffer, &ud->uart_buffer[count], ud->uart_pos - count);
}
ud->uart_pos -= count;
mutex_exit(&ud->uart_mtx);
if(count)
tud_cdc_n_write_flush(itf);
}
}
}
void tud_cdc_send_break_cb(uint8_t itf, uint16_t duration_ms) {
const uart_id_t *ui = &UART_ID[itf];
uart_data_t *ud = &UART_DATA[itf];
// is mutex for tx even needed??
//mutex_enter_blocking(&ud->lc_mtx);
if(duration_ms == 0xffff) {
uart_set_break(ui->inst, true);
} else if(duration_ms == 0x0000) {
uart_set_break(ui->inst, false);
} else {
// should be correct for non-compliant stacks?
uart_set_break(ui->inst, true);
sleep_ms(duration_ms);
uart_set_break(ui->inst, false);
}
//mutex_exit(&ud->lc_mtx);
}
void usb_cdc_process(uint8_t itf) {
uart_data_t *ud = &UART_DATA[itf];
mutex_enter_blocking(&ud->lc_mtx);
tud_cdc_n_get_line_coding(itf, &ud->usb_lc);
mutex_exit(&ud->lc_mtx);
usb_read_bytes(itf);
usb_write_bytes(itf);
}
void core1_entry(void) {
tusb_init();
ready = true;
while(1) {
int itf;
tud_task();
if(tud_ready()) { // we need to ignore DTR on the CDC side
gpio_put(SYS_LED_ACTIVE, 1);
for(itf = 0; itf < CFG_TUD_CDC; itf++) {
usb_cdc_process(itf);
}
} else {
gpio_put(SYS_LED_ACTIVE, 0);
}
}
}
void stimulate_status(uint8_t itf) {
const uart_id_t *ui = &UART_ID[itf];
uart_data_t *ud = &UART_DATA[itf];
critical_section_enter_blocking(&ud->spinlock_LED_RX);
if(ud->countdown_LED_RX == LED_TIMEOUT) {
gpio_put(ui->rx_led, 1);
}
if(ud->countdown_LED_RX != 0) {
ud->countdown_LED_RX--;
if(ud->countdown_LED_RX == 0) {
gpio_put(ui->rx_led, 0);
}
}
critical_section_exit(&ud->spinlock_LED_RX);
critical_section_enter_blocking(&ud->spinlock_LED_TX);
if(ud->countdown_LED_TX == LED_TIMEOUT) {
gpio_put(ui->tx_led, 1);
}
if(ud->countdown_LED_TX != 0) {
ud->countdown_LED_TX--;
if(ud->countdown_LED_TX == 0) {
gpio_put(ui->tx_led, 0);
}
}
critical_section_exit(&ud->spinlock_LED_TX);
}
bool update_status(struct repeating_timer *t) {
for(uint8_t itf = 0; itf < CFG_TUD_CDC; itf++) {
stimulate_status(itf);
}
return true;
}
static inline void uart_read_bytes(uint8_t itf) {
uart_data_t *ud = &UART_DATA[itf];
const uart_id_t *ui = &UART_ID[itf];
if(uart_is_readable(ui->inst)) {
critical_section_enter_blocking(&ud->spinlock_LED_RX);
ud->countdown_LED_RX = LED_TIMEOUT;
critical_section_exit(&ud->spinlock_LED_RX);
mutex_enter_blocking(&ud->uart_mtx);
if(ud->uart_pos < BUFFER_SIZE) {
ud->uart_buffer[ud->uart_pos] = uart_getc(ui->inst);
ud->uart_pos++;
} else {
uart_getc(ui->inst); // drop it on the floor
}
mutex_exit(&ud->uart_mtx);
}
}
void uart_write_bytes(uint8_t itf) {
uart_data_t *ud = &UART_DATA[itf];
if(ud->usb_pos && mutex_try_enter(&ud->usb_mtx, NULL)) {
const uart_id_t *ui = &UART_ID[itf];
// horrible! should use ring buffers!!
if(uart_is_writable(ui->inst)) { // && count < ud->usb_pos) {
critical_section_enter_blocking(&ud->spinlock_LED_TX);
ud->countdown_LED_TX = LED_TIMEOUT;
critical_section_exit(&ud->spinlock_LED_TX);
uart_putc_raw(ui->inst, ud->usb_buffer[0]);
if(ud->usb_pos > 1) {
memmove(ud->usb_buffer, &ud->usb_buffer[1], ud->usb_pos - 1);
}
ud->usb_pos--;
}
mutex_exit(&ud->usb_mtx);
}
}
void uart0_irq_fn(void) {
uart_read_bytes(0);
}
void uart1_irq_fn(void) {
uart_read_bytes(1);
}
void init_uart_data(uint8_t itf) {
const uart_id_t *ui = &UART_ID[itf];
uart_data_t *ud = &UART_DATA[itf];
init_led(ui->tx_led);
init_led(ui->rx_led);
ud->countdown_LED_TX = 0;
ud->countdown_LED_RX = 0;
critical_section_init(&ud->spinlock_LED_TX);
critical_section_init(&ud->spinlock_LED_RX);
/* Pinmux */
gpio_set_function(ui->tx_pin, GPIO_FUNC_UART);
gpio_set_function(ui->rx_pin, GPIO_FUNC_UART);
gpio_pull_up(ui->rx_pin); // important missed detail, prevents connection glitches
/* USB CDC LC */
ud->usb_lc.bit_rate = DEF_BIT_RATE;
ud->usb_lc.data_bits = DEF_DATA_BITS;
ud->usb_lc.parity = DEF_PARITY;
ud->usb_lc.stop_bits = DEF_STOP_BITS;
/* UART LC */
ud->uart_lc.bit_rate = DEF_BIT_RATE;
ud->uart_lc.data_bits = DEF_DATA_BITS;
ud->uart_lc.parity = DEF_PARITY;
ud->uart_lc.stop_bits = DEF_STOP_BITS;
/* Buffer */
ud->uart_pos = 0;
ud->usb_pos = 0;
/* Mutex */
mutex_init(&ud->lc_mtx);
mutex_init(&ud->uart_mtx);
mutex_init(&ud->usb_mtx);
/* UART start */
uart_init(ui->inst, ud->usb_lc.bit_rate);
uart_set_hw_flow(ui->inst, false, false);
uart_set_format(ui->inst, databits_usb2uart(ud->usb_lc.data_bits),
stopbits_usb2uart(ud->usb_lc.stop_bits),
parity_usb2uart(ud->usb_lc.parity));
uart_set_fifo_enabled(ui->inst, false);
uart_set_translate_crlf(ui->inst, false);
/* UART RX Interrupt */
irq_set_exclusive_handler(ui->irq, ui->irq_fn);
}
void start_uarts() {
uint8_t itf;
for(itf = 0; itf < CFG_TUD_CDC; itf++) {
init_uart_data(itf);
}
// init led stimulator
add_repeating_timer_ms(1, update_status, NULL, &stimulate);
// enable ISRs
for(itf = 0; itf < CFG_TUD_CDC; itf++) {
const uart_id_t *ui = &UART_ID[itf];
irq_set_enabled(ui->irq, true);
uart_set_irq_enables(ui->inst, true, false);
}
}
int main(void) {
int itf;
set_sys_clock_khz(125000, false);
multicore_reset_core1();
init_led(SYS_LED_ACTIVE);
usbd_serial_init();
start_uarts();
multicore_launch_core1(core1_entry);
do {
sleep_us(1);
} while(!ready);
while(1) {
if(tud_ready()) {
for(itf = 0; itf < CFG_TUD_CDC; itf++) {
update_uart_cfg(itf);
uart_write_bytes(itf);
}
}
}
return 0;
}