-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathad_mnist.py
130 lines (116 loc) · 4.54 KB
/
ad_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import ad
import numpy as np
import MnistLoader as Mloader
import matplotlib.pyplot as plt
def label2oneHot(label,n):
ret=np.zeros((10,n))
for i in range(n):
ret[label[i],i]=1
return ret
def unifyImages(images,n):
ret=np.zeros((784,n))
for i in range(n):
ret[:,i]=images[i,:]
return ret
def getPredResult(pred):
return np.argmax(pred)
if __name__ == "__main__":
images_train, label_train = Mloader.load_mnist(r"D:\PycharmProjs\AD\mnist", "train")
N=10000
modes=["complex","simple"]
mode=modes[1]
label_raw =label_train[:N]
label_train=label2oneHot(label_train,N)
images_train=unifyImages(images_train,N)
if mode=="complex":
W1=ad.Variable("W1(100*784)")
b1=ad.Variable("b1(100*1)")
W2=ad.Variable("W2(100*100)")
b2=ad.Variable("b2(100*1)")
W3=ad.Variable("w3(10*100)")
b3=ad.Variable("b3(10*1)")
z0=ad.Variable("input(768*1)")
label=ad.Variable("label")
z1=ad.matmul(W1,z0)+b1
z2=ad.matmul(W2,z1)+b2
z3=ad.matmul(W3,z2)+b3
pred=ad.softmax(z3)
J=ad.softmax_crossent(z3,label)
executor=ad.Executor([J,pred]+ad.gradients(J,[W1,b1,W2,b2,W3,b3]))
W1_val=np.random.random((100,784))*0.001
b1_val=np.random.random((100,1))*0.001
W2_val=np.random.random((100,100))*0.001
b2_val=np.random.random((100,1))*0.001
W3_val=np.random.random((10,100))*0.001
b3_val=np.random.random((10,1))*0.001
learnRate=0.01
if mode=="simple":
W1 = ad.Variable("W1(10*784)")
b1 = ad.Variable("b1(10*1)")
z0 = ad.Variable("input(768*1)")
label = ad.Variable("label")
z1=ad.matmul(W1,z0)+b1
pred = ad.softmax(z1)
J = ad.softmax_crossent(z1, label)
executor = ad.Executor([J, pred] + ad.gradients(J, [W1, b1]))
W1_val = np.random.random((10, 784))
b1_val = np.random.random((10, 1))
learnRate = 0.3
total_num=0
correct=0
error=0
acc=1
max_epoch = 3
for epochs in range(max_epoch):
for i in range(N):
z0_val=(images_train[:,i]>0).reshape((784,1))
label_val=label_train[:,i].reshape((10,1))
if mode=="complex":
_,prediction,W1_g,b1_g,W2_g,b2_g,W3_g,b3_g=executor.run(feed_dict={W1:W1_val,W2:W2_val, W3:W3_val, b1:b1_val,b2:b2_val,b3:b3_val,z0:z0_val,label:label_val})
W1_val-=learnRate*W1_g
W2_val-=learnRate*W2_g
W3_val-=learnRate * W3_g
b1_val-=learnRate*b1_g
b2_val-=learnRate * b2_g
b3_val-=learnRate * b3_g
#print(W3_g)
if mode=="simple":
_, prediction, W1_g, b1_g=executor.run(feed_dict={W1:W1_val, b1:b1_val,z0:z0_val,label:label_val})
W1_val -= learnRate * W1_g
b1_val -= learnRate * b1_g
if getPredResult(prediction)==label_raw[i]:
correct+=1
else:
error+=1
total_num+=1
acc=correct/total_num
err=error/total_num
print("training... epoch:",epochs,"iter",i,"acc:",acc,"err",err)
images_test,label_test=Mloader.load_mnist(r"D:\PycharmProjs\AD\mnist", "test")
N_test=2000
label_test_raw = label_test[:N_test]
label_test = label2oneHot(label_test, N_test)
images_test = unifyImages(images_test, N_test)
total_num = 0
error = 0
correct = 0
for i in range(N_test):
z0_val = (images_test[:, i] > 0).reshape((784, 1))
label_val = label_test[:, i].reshape((10, 1))
_, prediction, _1, _2 = executor.run(feed_dict={W1: W1_val, b1: b1_val, z0: z0_val, label: label_val})
if getPredResult(prediction) == label_test_raw[i]:
correct += 1
else:
error += 1
total_num += 1
acc = correct / total_num
err = error / total_num
print("testing...", "iter", i, "acc:", acc, "err", err)
print("Function Showcasing...")
for i in range(20):
z0_val = (images_test[:, i] > 0).reshape((784, 1))
label_val = label_test[:, i].reshape((10, 1))
_, prediction, _1, _2 = executor.run(feed_dict={W1: W1_val, b1: b1_val, z0: z0_val, label: label_val})
print("Prediction:",getPredResult(prediction))
plt.imshow(z0_val.reshape((28,28)),cmap='Greys', interpolation='nearest')
plt.show()