forked from hybridgroup/gocv
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvideo.go
157 lines (142 loc) · 6.21 KB
/
video.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
package gocv
/*
#include <stdlib.h>
#include "video.h"
*/
import "C"
import (
"image"
"unsafe"
)
/**
cv::OPTFLOW_USE_INITIAL_FLOW = 4,
cv::OPTFLOW_LK_GET_MIN_EIGENVALS = 8,
cv::OPTFLOW_FARNEBACK_GAUSSIAN = 256
For further details, please see: https://docs.opencv.org/master/dc/d6b/group__video__track.html#gga2c6cc144c9eee043575d5b311ac8af08a9d4430ac75199af0cf6fcdefba30eafe
*/
const (
OptflowUseInitialFlow = 4
OptflowLkGetMinEigenvals = 8
OptflowFarnebackGaussian = 256
)
// BackgroundSubtractorMOG2 is a wrapper around the cv::BackgroundSubtractorMOG2.
type BackgroundSubtractorMOG2 struct {
// C.BackgroundSubtractorMOG2
p unsafe.Pointer
}
// NewBackgroundSubtractorMOG2 returns a new BackgroundSubtractor algorithm
// of type MOG2. MOG2 is a Gaussian Mixture-based Background/Foreground
// Segmentation Algorithm.
//
// For further details, please see:
// https://docs.opencv.org/master/de/de1/group__video__motion.html#ga2beb2dee7a073809ccec60f145b6b29c
// https://docs.opencv.org/master/d7/d7b/classcv_1_1BackgroundSubtractorMOG2.html
//
func NewBackgroundSubtractorMOG2() BackgroundSubtractorMOG2 {
return BackgroundSubtractorMOG2{p: unsafe.Pointer(C.BackgroundSubtractorMOG2_Create())}
}
// NewBackgroundSubtractorMOG2WithParams returns a new BackgroundSubtractor algorithm
// of type MOG2 with customized parameters. MOG2 is a Gaussian Mixture-based Background/Foreground
// Segmentation Algorithm.
//
// For further details, please see:
// https://docs.opencv.org/master/de/de1/group__video__motion.html#ga2beb2dee7a073809ccec60f145b6b29c
// https://docs.opencv.org/master/d7/d7b/classcv_1_1BackgroundSubtractorMOG2.html
//
func NewBackgroundSubtractorMOG2WithParams(history int, varThreshold float64, detectShadows bool) BackgroundSubtractorMOG2 {
return BackgroundSubtractorMOG2{p: unsafe.Pointer(C.BackgroundSubtractorMOG2_CreateWithParams(C.int(history), C.double(varThreshold), C.bool(detectShadows)))}
}
// Close BackgroundSubtractorMOG2.
func (b *BackgroundSubtractorMOG2) Close() error {
C.BackgroundSubtractorMOG2_Close((C.BackgroundSubtractorMOG2)(b.p))
b.p = nil
return nil
}
// Apply computes a foreground mask using the current BackgroundSubtractorMOG2.
//
// For further details, please see:
// https://docs.opencv.org/master/d7/df6/classcv_1_1BackgroundSubtractor.html#aa735e76f7069b3fa9c3f32395f9ccd21
//
func (b *BackgroundSubtractorMOG2) Apply(src Mat, dst *Mat) {
C.BackgroundSubtractorMOG2_Apply((C.BackgroundSubtractorMOG2)(b.p), src.p, dst.p)
return
}
// BackgroundSubtractorKNN is a wrapper around the cv::BackgroundSubtractorKNN.
type BackgroundSubtractorKNN struct {
// C.BackgroundSubtractorKNN
p unsafe.Pointer
}
// NewBackgroundSubtractorKNN returns a new BackgroundSubtractor algorithm
// of type KNN. K-Nearest Neighbors (KNN) uses a Background/Foreground
// Segmentation Algorithm
//
// For further details, please see:
// https://docs.opencv.org/master/de/de1/group__video__motion.html#gac9be925771f805b6fdb614ec2292006d
// https://docs.opencv.org/master/db/d88/classcv_1_1BackgroundSubtractorKNN.html
//
func NewBackgroundSubtractorKNN() BackgroundSubtractorKNN {
return BackgroundSubtractorKNN{p: unsafe.Pointer(C.BackgroundSubtractorKNN_Create())}
}
// NewBackgroundSubtractorKNNWithParams returns a new BackgroundSubtractor algorithm
// of type KNN with customized parameters. K-Nearest Neighbors (KNN) uses a Background/Foreground
// Segmentation Algorithm
//
// For further details, please see:
// https://docs.opencv.org/master/de/de1/group__video__motion.html#gac9be925771f805b6fdb614ec2292006d
// https://docs.opencv.org/master/db/d88/classcv_1_1BackgroundSubtractorKNN.html
//
func NewBackgroundSubtractorKNNWithParams(history int, dist2Threshold float64, detectShadows bool) BackgroundSubtractorKNN {
return BackgroundSubtractorKNN{p: unsafe.Pointer(C.BackgroundSubtractorKNN_CreateWithParams(C.int(history), C.double(dist2Threshold), C.bool(detectShadows)))}
}
// Close BackgroundSubtractorKNN.
func (k *BackgroundSubtractorKNN) Close() error {
C.BackgroundSubtractorKNN_Close((C.BackgroundSubtractorKNN)(k.p))
k.p = nil
return nil
}
// Apply computes a foreground mask using the current BackgroundSubtractorKNN.
//
// For further details, please see:
// https://docs.opencv.org/master/d7/df6/classcv_1_1BackgroundSubtractor.html#aa735e76f7069b3fa9c3f32395f9ccd21
//
func (k *BackgroundSubtractorKNN) Apply(src Mat, dst *Mat) {
C.BackgroundSubtractorKNN_Apply((C.BackgroundSubtractorKNN)(k.p), src.p, dst.p)
return
}
// CalcOpticalFlowFarneback computes a dense optical flow using
// Gunnar Farneback's algorithm.
//
// For further details, please see:
// https://docs.opencv.org/master/dc/d6b/group__video__track.html#ga5d10ebbd59fe09c5f650289ec0ece5af
//
func CalcOpticalFlowFarneback(prevImg Mat, nextImg Mat, flow *Mat, pyrScale float64, levels int, winsize int,
iterations int, polyN int, polySigma float64, flags int) {
C.CalcOpticalFlowFarneback(prevImg.p, nextImg.p, flow.p, C.double(pyrScale), C.int(levels), C.int(winsize),
C.int(iterations), C.int(polyN), C.double(polySigma), C.int(flags))
return
}
// CalcOpticalFlowPyrLK calculates an optical flow for a sparse feature set using
// the iterative Lucas-Kanade method with pyramids.
//
// For further details, please see:
// https://docs.opencv.org/master/dc/d6b/group__video__track.html#ga473e4b886d0bcc6b65831eb88ed93323
//
func CalcOpticalFlowPyrLK(prevImg Mat, nextImg Mat, prevPts Mat, nextPts Mat, status *Mat, err *Mat) {
C.CalcOpticalFlowPyrLK(prevImg.p, nextImg.p, prevPts.p, nextPts.p, status.p, err.p)
return
}
// CalcOpticalFlowPyrLKWithParams calculates an optical flow for a sparse feature set using
// the iterative Lucas-Kanade method with pyramids.
//
// For further details, please see:
// https://docs.opencv.org/master/dc/d6b/group__video__track.html#ga473e4b886d0bcc6b65831eb88ed93323
//
func CalcOpticalFlowPyrLKWithParams(prevImg Mat, nextImg Mat, prevPts Mat, nextPts Mat, status *Mat, err *Mat,
winSize image.Point, maxLevel int, criteria TermCriteria, flags int, minEigThreshold float64) {
winSz := C.struct_Size{
width: C.int(winSize.X),
height: C.int(winSize.Y),
}
C.CalcOpticalFlowPyrLKWithParams(prevImg.p, nextImg.p, prevPts.p, nextPts.p, status.p, err.p, winSz, C.int(maxLevel), criteria.p, C.int(flags), C.double(minEigThreshold))
return
}