-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathdhta.py
241 lines (192 loc) · 8.14 KB
/
dhta.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import os
import torch
import time
import collections
import pandas as pd
import numpy as np
from PIL import Image
import torch.optim as optim
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from torch.utils.data import DataLoader
from utils.data_provider import *
from utils.hamming_matching import *
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
def load_model(path):
model = torch.load(path)
if torch.cuda.is_available():
model = model.cuda()
model.eval()
return model
def target_adv_loss(noisy_output, target_hash):
loss = -torch.mean(noisy_output * target_hash)
return loss
def get_alpha(n):
if n < 1000:
return 0.1
elif n >= 1000 and n < 1200:
return 0.2
elif n >= 1200 and n < 1400:
return 0.3
elif n >= 1400 and n < 1600:
return 0.5
elif n >= 1600 and n < 1800:
return 0.7
else:
return 1
def target_hash_adv(model, query, target_hash, epsilon, step=1, iteration=2000, randomize=False):
delta = torch.zeros_like(query).cuda()
if randomize:
delta.uniform_(-epsilon, epsilon)
delta.data = (query.data + delta.data).clamp(0, 1) - query.data
delta.requires_grad = True
for i in range(iteration):
alpha = get_alpha(i)
noisy_output = model(query + delta, alpha)
loss = target_adv_loss(noisy_output, target_hash)
loss.backward()
delta.data = delta - step * delta.grad.detach()
delta.data = delta.data.clamp(-epsilon, epsilon)
delta.data = (query.data + delta.data).clamp(0, 1) - query.data
delta.grad.zero_()
return query + delta.detach()
def load_label(filename, DATA_DIR):
label_filepath = os.path.join(DATA_DIR, filename)
label = np.loadtxt(label_filepath, dtype=np.int64)
return torch.from_numpy(label)
def GenerateCode(model, data_loader, num_data, bit, use_gpu=True):
B = np.zeros([num_data, bit], dtype=np.float32)
for iter, data in enumerate(data_loader, 0):
data_input, _, data_ind = data
if use_gpu:
data_input = Variable(data_input.cuda())
else:
data_input = Variable(data_input)
output = model(data_input)
if use_gpu:
B[data_ind.numpy(), :] = torch.sign(output.cpu().data).numpy()
else:
B[data_ind.numpy(), :] = torch.sign(output.data).numpy()
return B
def generate_hash(model, samples, num_data, bit):
output = model(samples)
B = torch.sign(output.cpu().data).numpy()
return B
def hash_anchor_code(hash_codes):
return torch.sign(torch.sum(hash_codes, dim=0))
def sample_image(image, name, sample_dir='sample/dhta'):
image = image.cpu().detach()[0]
image = transforms.ToPILImage()(image.float())
image.save(os.path.join(sample_dir, name + '.png'), quality=100)
dataset = 'NUS-WIDE'
DATA_DIR = './data/{}'.format(dataset)
DATABASE_FILE = 'database_img.txt'
TEST_FILE = 'test_img.txt'
DATABASE_LABEL = 'database_label.txt'
TEST_LABEL = 'test_label.txt'
epsilon = 8
epsilon = epsilon / 255.
n_t = 9
iteration = 1
method = 'DHTA'
if n_t == 1:
method = 'P2P'
transfer = False
bit = 32
batch_size = 32
model_name = 'DPSH'
backbone = 'VGG11'
model_path = 'checkpoint/{}_{}_{}_{}.pth'.format(dataset, model_name, backbone, bit)
model = load_model(model_path)
database_code_path = 'log/database_code_{}_{}_{}_{}.txt'.format(dataset, model_name, backbone, bit)
if transfer:
t_model_name = 'DPSH'
t_bit = 32
t_backbone = 'VGG11'
t_model_path = 'checkpoint/{}_{}_{}_{}.pth'.format(dataset, t_model_name, t_backbone, t_bit)
t_model = load_model(t_model_path)
else:
t_model_name = model_name
t_bit = bit
t_backbone = backbone
t_database_code_path = 'log/database_code_{}_{}_{}_{}.txt'.format(dataset, t_model_name, t_backbone, t_bit)
target_label_path = 'log/target_label_DHTA_{}.txt'.format(dataset)
test_code_path = 'log/test_code_{}_{}_{}.txt'.format(dataset, method, t_bit)
# data processing
dset_database = HashingDataset(DATA_DIR, DATABASE_FILE, DATABASE_LABEL)
dset_test = HashingDataset(DATA_DIR, TEST_FILE, TEST_LABEL)
database_loader = DataLoader(dset_database, batch_size=batch_size, shuffle=False, num_workers=4)
test_loader = DataLoader(dset_test, batch_size=batch_size, shuffle=False, num_workers=4)
num_database, num_test = len(dset_database), len(dset_test)
if os.path.exists(database_code_path):
database_hash = np.loadtxt(database_code_path, dtype=np.float)
else:
database_hash = GenerateCode(model, database_loader, num_database, bit)
np.savetxt(database_code_path, database_hash, fmt="%d")
if os.path.exists(t_database_code_path):
t_database_hash = np.loadtxt(t_database_code_path, dtype=np.float)
else:
t_database_hash = GenerateCode(t_model, database_loader, num_database, t_bit)
np.savetxt(t_database_code_path, t_database_hash, fmt="%d")
print('database hash codes prepared!')
test_labels_int = np.loadtxt(os.path.join(DATA_DIR, TEST_LABEL), dtype=int)
database_labels_int = np.loadtxt(os.path.join(DATA_DIR, DATABASE_LABEL), dtype=int)
test_labels_str = [''.join(label) for label in test_labels_int.astype(str)]
database_labels_str = [''.join(label) for label in database_labels_int.astype(str)]
test_labels_str = np.array(test_labels_str, dtype=str)
database_labels_str = np.array(database_labels_str, dtype=str)
if os.path.exists(target_label_path):
target_labels = np.loadtxt(target_label_path, dtype=np.int)
else:
candidate_labels_count = collections.Counter(database_labels_str)
candidate_labels_count = pd.DataFrame.from_dict(candidate_labels_count, orient='index').reset_index()
candidate_labels = candidate_labels_count[candidate_labels_count[0] > n_t]['index']
candidate_labels = np.array(candidate_labels, dtype=str)
target_labels = []
for i in range(num_test):
target_label_str = np.random.choice(candidate_labels)
target_label = list(target_label_str)
target_label = np.array(target_label, dtype=int)
target_labels.append(target_label)
target_labels = np.array(target_labels, dtype=np.int)
np.savetxt(target_label_path, target_labels, fmt="%d")
target_labels_str = [''.join(label) for label in target_labels.astype(str)]
qB = np.zeros([num_test, t_bit], dtype=np.float32)
query_anchor_codes = np.zeros((num_test, bit), dtype=np.float)
perceptibility = 0
start = time.time()
for it, data in enumerate(test_loader):
queries, _, index = data
n = index[-1].item() + 1
print(n)
queries = queries.cuda()
batch_size_ = index.size(0)
anchor_codes = torch.zeros((batch_size_, bit), dtype=torch.float)
for i in range(batch_size_):
target_label_str = target_labels_str[index[0] + i]
anchor_indexes = np.where(database_labels_str == target_label_str)
anchor_indexes = np.random.choice(anchor_indexes[0], size=n_t)
anchor_code = hash_anchor_code(
torch.from_numpy(database_hash[anchor_indexes]))
anchor_code = anchor_code.view(1, bit)
anchor_codes[i, :] = anchor_code
query_anchor_codes[it*batch_size:it*batch_size+batch_size_] = anchor_codes.numpy()
query_adv = target_hash_adv(model, queries, anchor_codes.cuda(), epsilon, iteration=iteration)
u_ind = np.linspace(it * batch_size, np.min((num_test, (it + 1) * batch_size)) - 1, batch_size_, dtype=int)
if transfer:
query_code = generate_hash(t_model, query_adv, batch_size_, t_bit)
else:
query_code = generate_hash(model, query_adv, batch_size_, bit)
qB[u_ind, :] = query_code
perceptibility += F.mse_loss(queries, query_adv).data * batch_size_
end = time.time()
np.savetxt(test_code_path, qB, fmt="%d")
print('Running time: %s Seconds'%(end-start))
print('perceptibility: {:.7f}'.format(torch.sqrt(perceptibility/num_test)))
a_map = CalcMap(query_anchor_codes, t_database_hash, target_labels, database_labels_int)
print('[Retrieval Phase] t-MAP(retrieval database): %3.5f' % a_map)
t_map = CalcMap(qB, t_database_hash, target_labels, database_labels_int)
print('[Retrieval Phase] t-MAP(retrieval database): %3.5f' % t_map)
map = CalcMap(qB, t_database_hash, test_labels_int, database_labels_int)
print('[Retrieval Phase] MAP(retrieval database): %3.5f' % map)