-
Notifications
You must be signed in to change notification settings - Fork 42
/
convex.c
238 lines (218 loc) · 7.02 KB
/
convex.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
/*
Copyright (c) 2022 Ashley Rose Hale (LadyHavoc)
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
#include <math.h>
#include "convex.h"
void convex_builder_initialize(convex_builder_state_t* b, float epsilon)
{
b->numcorners = 0;
b->numfaces = 0;
b->epsilon = 0.0f;
}
// this is a variant of QuickHull that relies on the caller to provide points
// in a reasonable order - the result will be the same regardless of point order
// but it's more efficient if the furthest points are provided first
//
// this could be a little more efficient if we kept track of edges during the
// build, but I think it may be more numerically stable this way
void convex_builder_add_point(convex_builder_state_t* b, float x, float y, float z)
{
int i, j, l;
convex_corner_t corner;
unsigned char removedcorner[CONVEX_MAX_CORNERS];
unsigned char removedface[CONVEX_MAX_FACES];
// we can't add any new points after max generations is reached
if (b->numcorners > CONVEX_MAX_CORNERS - 1 || b->numfaces > CONVEX_MAX_FACES - b->numcorners - 2)
return;
// make a corner struct with the same layout we expect to use for vector ops
corner.x = x;
corner.y = y;
corner.z = z;
corner.w = 1.0f;
float epsilon = b->epsilon;
// add the new corner to the bounding box
if (b->numcorners == 0)
{
b->extents[0][0] = corner.x;
b->extents[0][1] = corner.y;
b->extents[0][2] = corner.z;
b->extents[1][0] = corner.x;
b->extents[1][1] = corner.y;
b->extents[1][2] = corner.z;
}
else
{
if (b->extents[0][0] > corner.x)
b->extents[0][0] = corner.x;
if (b->extents[0][1] > corner.y)
b->extents[0][1] = corner.y;
if (b->extents[0][2] > corner.z)
b->extents[0][2] = corner.z;
if (b->extents[1][0] < corner.x)
b->extents[1][0] = corner.x;
if (b->extents[1][1] < corner.y)
b->extents[1][1] = corner.y;
if (b->extents[1][2] < corner.z)
b->extents[1][2] = corner.z;
}
if (b->numfaces > 0)
{
// determine which faces will be inside the resulting solid
for (i = 0; i < b->numfaces; i++)
{
convex_face_t* f = b->faces + i;
// face will be removed if it places this corner outside the solid
removedface[i] = (f->x * corner.x + f->y * corner.y + f->z * corner.z + f->w * corner.w) > epsilon;
}
// scan for removed faces
for (i = 0; i < b->numfaces; i++)
if (removedface[i])
break;
// exit early if point is completely inside the solid
if (i == b->numfaces)
return;
// garbage collect the removed faces
for (j = i + 1; j < b->numfaces; j++)
if (!removedface[j])
b->faces[i++] = b->faces[j];
b->numfaces = i;
}
// iterate active corners to create replacement faces using the new corner
for (i = 0; i < b->numcorners; i++)
{
convex_corner_t ca = b->corners[i];
for (j = 0; j < b->numcorners; j++)
{
// using the same point twice would make a degenerate plane
if (i == j)
continue;
convex_corner_t cb = b->corners[j];
// calculate the edge directions
convex_corner_t d, e;
convex_face_t face;
d.x = ca.x - cb.x;
d.y = ca.y - cb.y;
d.z = ca.z - cb.z;
d.w = 0.0f;
e.x = corner.x - cb.x;
e.y = corner.y - cb.y;
e.z = corner.z - cb.z;
e.w = 0.0f;
// cross product to produce a normal; this is not unit length,
// its length is the volume of the triangle *2
face.x = d.y * e.z - d.z * e.y;
face.y = d.z * e.x - d.x * e.z;
face.z = d.x * e.y - d.y * e.x;
float len2 = face.x * face.x + face.y * face.y + face.z * face.z;
if (len2 == 0.0f)
{
// we can't do anything with a degenerate plane
continue;
}
// normalize the plane normal
float inv = 1.0f / sqrt(len2);
face.x *= inv;
face.y *= inv;
face.z *= inv;
face.w = -(corner.x * face.x + corner.y * face.y + corner.z * face.z);
// flip the face if it's backwards (not facing center)
if ((b->extents[0][0] + b->extents[1][0]) * 0.5f * face.x + (b->extents[0][1] + b->extents[1][1]) * 0.5f * face.y + (b->extents[0][2] + b->extents[1][2]) * 0.5f * face.z + face.w > 0.0f)
{
face.x *= -1.0f;
face.y *= -1.0f;
face.z *= -1.0f;
face.w *= -1.0f;
}
// discard the proposed face if it slices through the solid
for (l = 0; l < b->numcorners; l++)
{
convex_corner_t cl = b->corners[l];
if (cl.x * face.x + cl.y * face.y + cl.z * face.z + face.w > epsilon)
break;
}
if (l < b->numcorners)
continue;
// add the new face
b->faces[b->numfaces++] = face;
}
}
// discard any corners that are no longer on the surface of the solid
for (i = 0; i < b->numcorners; i++)
{
convex_corner_t ca = b->corners[i];
for (j = 0; j < b->numfaces; j++)
{
const convex_face_t *f = b->faces + j;
if (ca.x * f->x + ca.y * f->y + ca.z * f->z + ca.w * f->w > -epsilon)
break;
}
// if we didn't find any face that uses this corner, remove the corner
removedcorner[i] = (j == b->numfaces);
}
// scan for removed corners and remove them
for (i = 0; i < b->numcorners; i++)
if (removedcorner[i])
break;
for (j = i + 1;j < b->numcorners;j++)
if (!removedcorner[j])
b->corners[i++] = b->corners[j];
b->numcorners = i;
// add the new corner
b->corners[b->numcorners++] = corner;
}
int convex_builder_get_planes4f(convex_builder_state_t* b, float* outplanes4f, int maxplanes, int positivew)
{
int i;
int n = b->numfaces < maxplanes ? b->numfaces : maxplanes;
if (positivew)
{
for (i = 0; i < n; i++)
{
const convex_face_t* f = b->faces + i;
outplanes4f[i * 4 + 0] = f->x;
outplanes4f[i * 4 + 1] = f->y;
outplanes4f[i * 4 + 2] = f->z;
outplanes4f[i * 4 + 3] = f->w * -1.0f;
}
}
else
{
for (i = 0; i < n; i++)
{
const convex_face_t* f = b->faces + i;
outplanes4f[i * 4 + 0] = f->x;
outplanes4f[i * 4 + 1] = f->y;
outplanes4f[i * 4 + 2] = f->z;
outplanes4f[i * 4 + 3] = f->w;
}
}
return b->numfaces;
}
int convex_builder_get_points3f(convex_builder_state_t *b, float* outpoints3f, int maxpoints)
{
int i;
int n = b->numcorners < maxpoints ? b->numcorners : maxpoints;
for (i = 0; i < n; i++)
{
const convex_corner_t* c = b->corners + i;
outpoints3f[i * 3 + 0] = c->x;
outpoints3f[i * 3 + 1] = c->y;
outpoints3f[i * 3 + 2] = c->z;
}
return b->numcorners;
}