In this document, we provide some toy examples for getting started. All the examples in this document and even more examples are available in examples/.
We have set up a random agent that can play randomly on each environment. An example of applying a random agent on Blackjack is as follow:
import rlcard
from rlcard.agents.random_agent import RandomAgent
from rlcard.utils.utils import set_global_seed
# Make environment
env = rlcard.make('blackjack')
episode_num = 2
# Set a global seed
set_global_seed(0)
# Set up agents
agent_0 = RandomAgent(action_num=env.action_num)
env.set_agents([agent_0])
for episode in range(episode_num):
# Generate data from the environment
trajectories, _ = env.run(is_training=False)
# Print out the trajectories
print('\nEpisode {}'.format(episode))
for ts in trajectories[0]:
print('State: {}, Action: {}, Reward: {}, Next State: {}, Done: {}'.format(ts[0], ts[1], ts[2], ts[3], ts[4]))
The expected output should look like something as follows:
Episode 0
State: {'obs': array([20, 3]), 'legal_actions': [0, 1]}, Action: 0, Reward: 0, Next State: {'obs': array([15, 3]), 'legal_actions': [0, 1]}, Done: False
State: {'obs': array([15, 3]), 'legal_actions': [0, 1]}, Action: 1, Reward: -1, Next State: {'obs': array([15, 20]), 'legal_actions': [0, 1]}, Done: True
Episode 1
State: {'obs': array([15, 5]), 'legal_actions': [0, 1]}, Action: 1, Reward: 1, Next State: {'obs': array([15, 23]), 'legal_actions': [0, 1]}, Done: True
Note that the states and actions are wrapped by env
in Blackjack. In this example, the [20, 3]
suggests the current player obtains score 20 while the card that faces up in the dealer's hand has score 3. Action 0 means "hit" while action 1 means "stand". Reward 1 suggests the player wins while reward -1 suggests the dealer wins. Reward 0 suggests a tie. The above data can be directly fed into a RL algorithm for training.
The second example is to use Deep-Q learning to train an agent on Blackjack. We aim to use this example to show how reinforcement learning algorithms can be developed and applied in our toolkit. We design a run
function which plays one complete game and provides the data for training RL agents. The example is shown below:
import tensorflow as tf
import rlcard
from rlcard.agents.dqn_agent import DQNAgent
from rlcard.utils.utils import set_global_seed
from rlcard.utils.logger import Logger
# Make environment
env = rlcard.make('blackjack')
eval_env = rlcard.make('blackjack')
# Set the iterations numbers and how frequently we evaluate/save plot
evaluate_every = 100
save_plot_every = 1000
evaluate_num = 10000
episode_num = 1000000
# Set the the number of steps for collecting normalization statistics
# and intial memory size
memory_init_size = 100
norm_step = 100
# The paths for saving the logs and learning curves
root_path = './experiments/blackjack_dqn_result/'
log_path = root_path + 'log.txt'
csv_path = root_path + 'performance.csv'
figure_path = root_path + 'figures/'
# Set a global seed
set_global_seed(0)
with tf.Session() as sess:
# Set agents
global_step = tf.Variable(0, name='global_step', trainable=False)
agent = DQNAgent(sess,
scope='dqn',
action_num=env.action_num,
replay_memory_init_size=memory_init_size,
norm_step=norm_step,
state_shape=env.state_shape,
mlp_layers=[10,10])
env.set_agents([agent])
eval_env.set_agents([agent])
sess.run(tf.global_variables_initializer())
# Count the number of steps
step_counter = 0
# Init a Logger to plot the learning curve
logger = Logger(xlabel='timestep', ylabel='reward', legend='DQN on Blackjack', log_path=log_path, csv_path=csv_path)
for episode in range(episode_num):
# Generate data from the environment
trajectories, _ = env.run(is_training=True)
# Feed transitions into agent memory, and train
for ts in trajectories[0]:
agent.feed(ts)
step_counter += 1
# Train the agent
if step_counter > memory_init_size + norm_step:
loss = agent.train()
print('\rINFO - Step {}, loss: {}'.format(step_counter, loss), end='')
# Evaluate the performance
if episode % evaluate_every == 0:
reward = 0
for eval_episode in range(evaluate_num):
_, payoffs = eval_env.run(is_training=False)
reward += payoffs[0]
logger.log('\n########## Evaluation ##########')
logger.log('Timestep: {} Average reward is {}'.format(env.timestep, float(reward)/evaluate_num))
# Add point to logger
logger.add_point(x=env.timestep, y=float(reward)/evaluate_num)
# Make plot
if episode % save_plot_every == 0 and episode > 0:
logger.make_plot(save_path=figure_path+str(episode)+'.png')
# Make the final plot
logger.make_plot(save_path=figure_path+'final_'+str(episode)+'.png')
The expected output is something like below:
########## Evaluation ##########
Timestep: 1 Average reward is -0.2868
########## Evaluation ##########
Timestep: 136 Average reward is -0.642
INFO - Copied model parameters to target network.
INFO - Step 271, loss: 0.6861089468002319
########## Evaluation ##########
Timestep: 271 Average reward is -0.5751
INFO - Step 402, loss: 0.7866340875625612
########## Evaluation ##########
Timestep: 402 Average reward is -0.5857
INFO - Step 537, loss: 0.7525347471237183
########## Evaluation ##########
Timestep: 537 Average reward is -0.5762
INFO - Step 681, loss: 0.7957633137702942
########## Evaluation ##########
Timestep: 681 Average reward is -0.4895
INFO - Step 824, loss: 0.8273138403892517
########## Evaluation ##########
Timestep: 824 Average reward is -0.4341
INFO - Step 958, loss: 0.7127346992492676
########## Evaluation ##########
Timestep: 958 Average reward is -0.3816
INFO - Step 1093, loss: 0.61426079273223884
########## Evaluation ##########
Timestep: 1093 Average reward is -0.2907
INFO - Step 1200, loss: 0.7053447961807251
INFO - Copied model parameters to target network.
INFO - Step 1221, loss: 0.7781758308410645
########## Evaluation ##########
Timestep: 1221 Average reward is -0.2197
In Blackjack, the player will get a payoff at the end of the game: 1 if the player wins, -1 if the player loses, and 0 if it is a tie. The performance is measured by the average payoff the player obtains by playing 1000 episodes. The above example shows that the agent achieves better and better performance during training. The logs and learning curves are saved in ./experiments/blackjack_dqn_result/
.
We have also used multiple processes to accelerate training a DQN agent on Blackjack. Multiple processes are applied in two parts. The first is generating data from the environment, the second is evaluating the performance. Our strategy is setting a class inherited from Process class, which is responsible for playing game and providing the data. And we uses an input queue to deliver instruction information like the number of tasks, the values of network variables in main process. In particular, when evaluation starts, we first copy network variables' values of main process to subprocess to update the subnetwork. For the output, we also use a queue to receive it. The example is shown below:
''' A toy example of learning a Deep-Q Agent on Blackjack with multiple processes
'''
import numpy as np
import tensorflow as tf
from multiprocessing import Process, JoinableQueue, Queue
import rlcard
from rlcard.agents.dqn_agent import DQNAgent
from rlcard.utils.utils import set_global_seed, assign_task
from rlcard.utils.logger import Logger
# Set the the number of steps for collecting normalization statistics
# and intial memory size
memory_init_size = 100
norm_step = 100
# Set the iterations numbers and how frequently we evaluate/save plot
evaluate_every = 100
save_plot_every = 1000
evaluate_num = 10000
episode_num = 1000000
# The paths for saving the logs and learning curves
root_path = './experiments/blackjack_dqn_result/'
log_path = root_path + 'log.txt'
csv_path = root_path + 'performance.csv'
figure_path = root_path + 'figures/'
# Set the process class to generate trajectories for training and evaluation
class BlackjackProcess(Process):
def __init__(self, index, input_queue, output_queue, seed=None):
Process.__init__(self)
if seed is not None:
np.random.seed(seed)
self.index = index
self.input_queue = input_queue
self.output_queue = output_queue
def run(self):
#import tensorflow as tf
self.env = rlcard.make('blackjack')
self.sess = tf.Session()
agent = DQNAgent(self.sess,
scope='sub-dqn' + str(self.index),
action_num=self.env.action_num,
replay_memory_init_size=memory_init_size,
norm_step=norm_step,
state_shape=self.env.state_shape,
mlp_layers=[10, 10])
self.env.set_agents([agent])
self.sess.run(tf.global_variables_initializer())
# normalize
for _ in range(norm_step):
trajectories, _ = self.env.run()
for ts in trajectories[0]:
agent.feed(ts)
# Receive instruction to run game and generate trajectories
while True:
instruction = self.input_queue.get()
if instruction is not None:
tasks, train_flag, variables, total_t = instruction
# For evaluation
if not train_flag:
agent.total_t = total_t
global_vars = [tf.convert_to_tensor(var) for var in variables]
agent.copy_params_op(global_vars)
for _ in range(tasks):
_, payoffs = self.env.run(is_training=train_flag)
self.output_queue.put(payoffs)
# For training
else:
for _ in range(tasks):
trajectories, _ = self.env.run(is_training=train_flag)
self.output_queue.put(trajectories)
self.input_queue.task_done()
else:
self.input_queue.task_done()
break
self.sess.close()
return
# Set a global seed
set_global_seed(0)
# Initialize processes
PROCESS_NUM = 16
INPUT_QUEUE = JoinableQueue()
OUTPUT_QUEUE = Queue()
PROCESSES = [BlackjackProcess(index, INPUT_QUEUE, OUTPUT_QUEUE, np.random.randint(1000000))
for index in range(PROCESS_NUM)]
for p in PROCESSES:
p.start()
# Make environment
env = rlcard.make('blackjack')
eval_env = rlcard.make('blackjack')
with tf.Session() as sess:
# Set agents
global_step = tf.Variable(0, name='global_step', trainable=False)
agent = DQNAgent(sess,
scope='dqn',
action_num=env.action_num,
replay_memory_init_size=memory_init_size,
norm_step=norm_step,
state_shape=env.state_shape,
mlp_layers=[10, 10])
env.set_agents([agent])
eval_env.set_agents([agent])
sess.run(tf.global_variables_initializer())
# Count the number of steps
step_counter = 0
# Init a Logger to plot the learning curve
logger = Logger(xlabel='timestep', ylabel='reward',
legend='DQN on Blackjack', log_path=log_path, csv_path=csv_path)
for episode in range(episode_num // evaluate_every):
# Generate data from the environment
tasks = assign_task(evaluate_every, PROCESS_NUM)
for task in tasks:
INPUT_QUEUE.put((task, True, None, None))
for _ in range(evaluate_every):
trajectories = OUTPUT_QUEUE.get()
# Feed transitions into agent memory, and train
for ts in trajectories[0]:
agent.feed(ts)
step_counter += 1
# Train the agent
if step_counter > memory_init_size + norm_step:
loss = agent.train()
print('\rINFO - Step {}, loss: {}'.format(step_counter, loss), end='')
# Evaluate the performance
reward = 0
tasks = assign_task(evaluate_num, PROCESS_NUM)
variables = tf.contrib.slim.get_variables(scope="dqn", collection=tf.GraphKeys.TRAINABLE_VARIABLES)
variables = [var.eval() for var in variables]
for task in tasks:
INPUT_QUEUE.put((task, False, variables, agent.total_t))
for _ in range(evaluate_num):
payoffs = OUTPUT_QUEUE.get()
reward += payoffs[0]
logger.log('\n########## Evaluation ##########')
logger.log('Average reward is {}'.format(float(reward)/evaluate_num))
# Add point to logger
logger.add_point(x=env.timestep, y=float(reward)/evaluate_num)
# Make plot
if (episode*evaluate_every) % save_plot_every == 0 and episode > 0:
logger.make_plot(save_path=figure_path+str(episode)+'.png')
# Make the final plot
logger.make_plot(save_path=figure_path+'final_'+str(episode)+'.png')
# Close multi-processes
for _ in range(PROCESS_NUM):
INPUT_QUEUE.put(None)
INPUT_QUEUE.join()
for p in PROCESSES:
p.join()
Example output is as follow:
########## Evaluation ##########
Average reward is -0.6465
INFO - Copied model parameters to target network.
INFO - Step 275, loss: 0.6382206678390503
########## Evaluation ##########
Average reward is -0.637
INFO - Step 410, loss: 0.8343381881713867
########## Evaluation ##########
Average reward is -0.5895
INFO - Step 545, loss: 0.8565489053726196
########## Evaluation ##########
Average reward is -0.5677
INFO - Step 676, loss: 0.8005591034889221
########## Evaluation ##########
Average reward is -0.5433
INFO - Step 804, loss: 0.8520776629447937
########## Evaluation ##########
Average reward is -0.4937
INFO - Step 928, loss: 0.9055832624435425
########## Evaluation ##########
Average reward is -0.4632
INFO - Step 1046, loss: 0.6933344602584839
########## Evaluation ##########
Average reward is -0.4063
INFO - Step 1181, loss: 0.7428562045097351
########## Evaluation ##########
Average reward is -0.3113
INFO - Step 1200, loss: 0.6615606546401978
INFO - Copied model parameters to target network.
INFO - Step 1306, loss: 0.5042598247528076
########## Evaluation ##########
Average reward is -0.2181
INFO - Step 1437, loss: 0.59900450706481934
########## Evaluation ##########
Average reward is -0.1525
INFO - Step 1558, loss: 0.74328237771987926
########## Evaluation ##########
Average reward is -0.1158
INFO - Step 1686, loss: 0.69347083568573586
########## Evaluation ##########
Average reward is -0.1109
INFO - Step 1819, loss: 0.58389663696289067
########## Evaluation ##########
Average reward is -0.1165
INFO - Step 1938, loss: 0.64740669727325447
########## Evaluation ##########
Average reward is -0.0897
INFO - Step 2068, loss: 0.42769449949264526
########## Evaluation ##########
Average reward is -0.105
INFO - Step 2199, loss: 0.75212180614471447
We have designed simple human interfaces to play against the pretrained model. Leduc Hold'em is a simplified version of Texas Hold'em. Rules can be found here. Example of playing against Leduc Hold'em NFSP model is as below:
import rlcard
# Make environment and enable human mode
env = rlcard.make('leduc-holdem')
# Set it to human mode
env.set_mode(human_mode=True)
# Reset environment
env.reset()
while True:
action = int(input(">> You choose action (integer): "))
env.step(action)
Example output is as follow:
>> Leduc Hold'em pre-trained model
>> Start a new game!
>> Agent 1 chooses raise
=============== Community Card ===============
┌─────────┐
│░░░░░░░░░│
│░░░░░░░░░│
│░░░░░░░░░│
│░░░░░░░░░│
│░░░░░░░░░│
│░░░░░░░░░│
│░░░░░░░░░│
└─────────┘
=============== Your Hand ===============
┌─────────┐
│J │
│ │
│ │
│ ♥ │
│ │
│ │
│ J│
└─────────┘
=============== Chips ===============
Yours: +
Agent 1: +++
=========== Actions You Can Choose ===========
0: call, 1: raise, 2: fold
>> You choose action (integer):
We also provide a running demo of a rule-based agent for UNO. Try it by running examples/uno_human.py
.
We have wrraped the environment as single agent environment by assuming that other players play with pre-trained models. The interfaces are exactly the same to OpenAI Gym. Thus, any single-agent algorithm can be connected to the environment. An example of Leduc Hold'em is as below:
import tensorflow as tf
import numpy as np
import rlcard
from rlcard.agents.random_agent import RandomAgent
from rlcard.agents.dqn_agent import DQNAgent
from rlcard.utils.utils import set_global_seed
from rlcard.utils.logger import Logger
# Make environment and enable single mode
env = rlcard.make('leduc-holdem')
eval_env = rlcard.make('leduc-holdem')
env.set_mode(single_agent_mode=True)
eval_env.set_mode(single_agent_mode=True)
# Set the iterations numbers and how frequently we evaluate/save plot
evaluate_every = 1000
save_plot_every = 1000
evaluate_num = 10000
timesteps = 1000000
# Set the the number of steps for collecting normalization statistics
# and intial memory size
memory_init_size = 1000
norm_step = 100
# The paths for saving the logs and learning curves
root_path = './experiments/leduc_holdem_single_agent_dqn_result/'
log_path = root_path + 'log.txt'
csv_path = root_path + 'performance.csv'
figure_path = root_path + 'figures/'
# Set a global seed
set_global_seed(0)
with tf.Session() as sess:
global_step = tf.Variable(0, name='global_step', trainable=False)
agent = DQNAgent(sess,
scope='dqn',
action_num=env.action_num,
replay_memory_size=int(1e5),
replay_memory_init_size=memory_init_size,
norm_step=norm_step,
state_shape=env.state_shape,
mlp_layers=[128, 128])
sess.run(tf.global_variables_initializer())
# Init a Logger to plot the learning curve
logger = Logger(xlabel='timestep', ylabel='reward', legend='DQN on Leduc Holdem', log_path=log_path, csv_path=csv_path)
state = env.reset()
for timestep in range(timesteps):
action = agent.step(state)
next_state, reward, done = env.step(action)
ts = (state, action, reward, next_state, done)
agent.feed(ts)
train_count = timestep - (memory_init_size + norm_step)
if train_count > 0:
loss = agent.train()
print('\rINFO - Step {}, loss: {}'.format(timestep, loss), end='')
if timestep % evaluate_every == 0:
rewards = []
state = eval_env.reset()
for _ in range(evaluate_num):
action = agent.eval_step(state)
_, reward, done = env.step(action)
if done:
rewards.append(reward)
logger.log('\n########## Evaluation ##########')
logger.log('Timestep: {} Average reward is {}'.format(timestep, np.mean(rewards)))
# Add point to logger
logger.add_point(x=env.timestep, y=float(reward)/evaluate_num)
# Make plot
if timestep % save_plot_every == 0:
logger.make_plot(save_path=figure_path+str(timestep)+'.png')
# Make the final plot
logger.make_plot(save_path=figure_path+'final_'+str(timestep)+'.png')
To show how we can use step
and step_back
to traverse the game tree, we provide an example of solving Leduc Hold'em with CFR:
import numpy as np
import rlcard
from rlcard.agents.cfr_agent import CFRAgent
from rlcard import models
from rlcard.utils.utils import set_global_seed
from rlcard.utils.logger import Logger
# Make environment and enable human mode
env = rlcard.make('leduc-holdem', allow_step_back=True)
eval_env = rlcard.make('leduc-holdem')
# Set the iterations numbers and how frequently we evaluate/save plot
evaluate_every = 100
save_plot_every = 1000
evaluate_num = 10000
episode_num = 10000000
# The paths for saving the logs and learning curves
root_path = './experiments/leduc_holdem_cfr_result/'
log_path = root_path + 'log.txt'
csv_path = root_path + 'performance.csv'
figure_path = root_path + 'figures/'
# Set a global seed
set_global_seed(0)
# Initilize CFR Agent
agent = CFRAgent(env)
# Evaluate CFR against pre-trained NFSP
eval_env.set_agents([agent, models.load('leduc-holdem-nfsp').agents[0]])
# Init a Logger to plot the learning curve
logger = Logger(xlabel='iteration', ylabel='reward', legend='CFR on Leduc Holdem', log_path=log_path, csv_path=csv_path)
for episode in range(episode_num):
agent.train()
print('\rIteration {}'.format(episode), end='')
# Evaluate the performance. Play with NFSP agents.
if episode % evaluate_every == 0:
reward = 0
for eval_episode in range(evaluate_num):
_, payoffs = eval_env.run(is_training=False)
reward += payoffs[0]
logger.log('\n########## Evaluation ##########')
logger.log('Iteration: {} Average reward is {}'.format(episode, float(reward)/evaluate_num))
# Add point to logger
logger.add_point(x=env.timestep, y=float(reward)/evaluate_num)
# Make plot
if episode % save_plot_every == 0 and episode > 0:
logger.make_plot(save_path=figure_path+str(episode)+'.png')
# Make the final plot
logger.make_plot(save_path=figure_path+'final_'+str(episode)+'.png')
In the above example, the performance is measured by playing against a pre-trained NFSP model. The expected output is as below:
Iteration 0
########## Evaluation ##########
Iteration: 0 Average reward is -1.0494
Iteration 100
########## Evaluation ##########
Iteration: 100 Average reward is -0.3044
Iteration 200
########## Evaluation ##########
Iteration: 200 Average reward is -0.2224
Iteration 300
########## Evaluation ##########
Iteration: 300 Average reward is 0.0053
Iteration 400
########## Evaluation ##########
Iteration: 400 Average reward is -0.0163
Iteration 500
########## Evaluation ##########
Iteration: 500 Average reward is -0.0715
Iteration 600
########## Evaluation ##########
Iteration: 600 Average reward is -0.0435
Iteration 700
########## Evaluation ##########
Iteration: 700 Average reward is -0.0347
Iteration 800
########## Evaluation ##########
Iteration: 800 Average reward is 0.123
Iteration 900
########## Evaluation ##########
Iteration: 900 Average reward is 0.0215
Iteration 1000
########## Evaluation ##########
Iteration: 1000 Average reward is -0.0322
We observe that CFR achieves simialr performance as NFSP. However, CFR requires traversal of the game tree, which is infeasible in large environments.