forked from jinweiluo/BERT4Rec_AC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcandidate_gen_beauty.py
89 lines (76 loc) · 3.05 KB
/
candidate_gen_beauty.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import argparse
import numpy as np
import pickle
def str2bool(v):
return v.lower() in ("true", "t", "1")
class ArgumentGroup(object):
def __init__(self, parser, title, des):
self._group = parser.add_argument_group(title=title, description=des)
def add_arg(self, name, type, default, help, **kwargs):
type = str2bool if type == bool else type
self._group.add_argument(
"--" + name,
default=default,
type=type,
help=help + ' Default: %(default)s.',
**kwargs)
def print_arguments(args):
print('----------- Configuration Arguments -----------')
for arg, value in sorted(six.iteritems(vars(args))):
print('%s: %s' % (arg, value))
print('------------------------------------------------')
parser = argparse.ArgumentParser(__doc__)
data_g = ArgumentGroup(parser, "data", "Data paths, vocab paths and data processing options")
data_g.add_arg("data_name", str, "beauty", "Path to training data.")
data_g.add_arg("test_set_dir", str, "./bert_train/data/beauty-test.txt", "Path to test data.")
data_g.add_arg("vocab_path", str, "./bert_train/data/beauty2.0.2.vocab", "Vocabulary path.")
data_g.add_arg("save_dir", str, "./bert_train/data/", "Path to test data.")
args = parser.parse_args()
print("Generate candidates")
user_count = 0
input_ids = []
labels = []
f = open(args.test_set_dir, "r")
line = f.readline()
while line:
parsed_line = line
split_samples = parsed_line.split(";")
tmp_ids = split_samples[1].split(',')
input_ids.append([int(x) for x in tmp_ids])
tmp_label = split_samples[5].split(',')
labels = labels + [[int(x)] for x in tmp_label]
user_count += 1
line = f.readline()
input_ids = np.array(input_ids)
labels = np.array(labels)
print(user_count)
print(input_ids)
print(labels)
print('load vocab from :' + args.vocab_path)
with open(args.vocab_path, 'rb') as input_file:
vocab = pickle.load(input_file)
keys = vocab.counter.keys()
values = vocab.counter.values()
ids = vocab.convert_tokens_to_ids(keys)
sum_value = np.sum([x for x in values])
probability = [value / sum_value for value in values]
candidates = []
for idx in range(len(input_ids)):
rated = set(input_ids[idx])
rated.add(0)
rated.add(labels[idx][0])
item_idx = [labels[idx][0]]
if vocab is not None:
while len(item_idx) < 101:
sampled_ids = np.random.choice(ids, 101, replace=False, p=probability)
sampled_ids = [x for x in sampled_ids if x not in rated and x not in item_idx]
item_idx.extend(sampled_ids[:])
item_idx = item_idx[:101]
candidates.append(item_idx)
# note that we always put the true item in the first position---[target, 100 * negative]
print(candidates)
print(len(candidates))
candidates_file_name = args.save_dir + args.data_name + '.candidate'
print('candidate file: ' + candidates_file_name)
with open(candidates_file_name, 'wb') as output_file:
pickle.dump(candidates, output_file, protocol=2)