-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_isl_5tasks_entity13.py
1290 lines (1034 loc) · 54.1 KB
/
main_isl_5tasks_entity13.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import argparse
import shutil
import time
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import imagenet_network as models
import numpy as np
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
from torchvision import transforms
from breeds_inc import BREEDSFactory
import os
import torch.optim as optim
import torch.nn.functional as F
from copy import deepcopy
import json
import logging
import pickle
def get_logger(filename, verbosity=1, name=None):
level_dict = {0: logging.DEBUG, 1: logging.INFO, 2: logging.WARNING}
formatter = logging.Formatter(
"[%(asctime)s][%(filename)s][line:%(lineno)d][%(levelname)s] %(message)s"
)
logger = logging.getLogger(name)
logger.setLevel(level_dict[verbosity])
fh = logging.FileHandler(filename, "w")
fh.setFormatter(formatter)
logger.addHandler(fh)
sh = logging.StreamHandler()
sh.setFormatter(formatter)
logger.addHandler(sh)
return logger
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
# lighting transform
# https://git.io/fhBOc
IMAGENET_PCA = {
'eigval':torch.Tensor([0.2175, 0.0188, 0.0045]),
'eigvec':torch.Tensor([
[-0.5675, 0.7192, 0.4009],
[-0.5808, -0.0045, -0.8140],
[-0.5836, -0.6948, 0.4203],
])
}
class Lighting(object):
"""
Lighting noise (see https://git.io/fhBOc)
"""
def __init__(self, alphastd, eigval, eigvec):
self.alphastd = alphastd
self.eigval = eigval
self.eigvec = eigvec
def __call__(self, img):
if self.alphastd == 0:
return img
alpha = img.new().resize_(3).normal_(0, self.alphastd)
rgb = self.eigvec.type_as(img).clone()\
.mul(alpha.view(1, 3).expand(3, 3))\
.mul(self.eigval.view(1, 3).expand(3, 3))\
.sum(1).squeeze()
return img.add(rgb.view(3, 1, 1).expand_as(img))
model_names = sorted(name for name in models.__dict__ if name.islower() and not name.startswith("__") and callable(models.__dict__[name]))
def get_optimizer(optimizer_name, parameters, lr, momentum=0, weight_decay=0):
if optimizer_name == 'sgd':
return optim.SGD(parameters, lr, momentum=momentum, weight_decay=weight_decay)
elif optimizer_name == 'nesterov_sgd':
return optim.SGD(parameters, lr, momentum=momentum, weight_decay=weight_decay, nesterov=True)
elif optimizer_name == 'rmsprop':
return optim.RMSprop(parameters, lr=lr, momentum=momentum, weight_decay=weight_decay)
elif optimizer_name == 'adagrad':
return optim.Adagrad(parameters, lr=lr, weight_decay=weight_decay)
elif optimizer_name == 'adam':
return optim.Adam(parameters, lr=lr, weight_decay=weight_decay)
def validate(val_loader, model, criterion, logger):
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to evaluate mode
model.eval()
with torch.no_grad():
end = time.time()
for i, (input, target) in enumerate(val_loader):
input = input.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
# compute output
output, _ = model(input)
loss = criterion(output, target)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), input.size(0))
top1.update(acc1[0], input.size(0))
top5.update(acc5[0], input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % 10 == 0:
logger.info('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Acc@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Acc@5 {top5.val:.3f} ({top5.avg:.3f})'.format(i, len(val_loader),
batch_time=batch_time, loss=losses,
top1=top1, top5=top5))
logger.info(' * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}'
.format(top1=top1, top5=top5))
return top1.avg, top5.avg, losses.avg
def validate_with_new_old_model(val_loader, model, model_old, criterion, alpha, logger):
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to evaluate mode
model.eval()
model_old.eval()
with torch.no_grad():
end = time.time()
for i, (input, target) in enumerate(val_loader):
input = input.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
# compute output
output, _ = model(input)
output_old, _ = model_old(input)
_, pred_old = output_old.topk(1, 1, True, True)
pred_old = pred_old.t()
# print("Old Prediction: {}".format(pred_old[0]))
_, pred = output.topk(1, 1, True, True)
pred = pred.t()
# print("New Prediction: {}".format(pred[0]))
output_new = output_old + alpha * output
_, pred_new = output_new.topk(1, 1, True, True)
pred_new = pred_new.t()
# print("Combination Prediction: {}".format(pred_new[0]))
loss = criterion(output_new, target)
# measure accuracy and record loss
acc1, acc5 = accuracy(output_new, target, topk=(1, 5))
losses.update(loss.item(), input.size(0))
top1.update(acc1[0], input.size(0))
top5.update(acc5[0], input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % 10 == 0:
logger.info('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Acc@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Acc@5 {top5.val:.3f} ({top5.avg:.3f})'.format(i, len(val_loader),
batch_time=batch_time, loss=losses,
top1=top1, top5=top5))
logger.info(' * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}'
.format(top1=top1, top5=top5))
return top1.avg, top5.avg, losses.avg
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def alpha_evaluation_(temp_model,
temp_model_old,
train_val_loader,
criterion,
logger):
performance_dict = dict()
for alpha in np.arange(2.0, 0.0, -0.05):
logger.info("alpha: {}".format(alpha))
performance_dict[alpha] = dict()
train_val_top1, _, _ = validate_with_new_old_model(train_val_loader, temp_model, temp_model_old, criterion,alpha, logger)
performance_dict[alpha]['train_val_top1'] = train_val_top1.cpu().item()
logger.info("\n")
alpha = 0
logger.info("alpha: {}".format(alpha))
performance_dict[alpha] = dict()
train_val_top1, _, _ = validate_with_new_old_model(train_val_loader, temp_model, temp_model_old, criterion, alpha, logger)
performance_dict[alpha]['train_val_top1'] = train_val_top1.cpu().item()
return performance_dict
def parse_args():
parser = argparse.ArgumentParser(description='train ISL')
# general
parser.add_argument('--ds_name',
help='dataset name',
required=True,
type=str)
parser.add_argument('--inc_step_num',
help='incremental steps size',
required=True,
type=int)
parser.add_argument('--info_dir',
help='breeds benchmark info path',
required=False,
type=str,
default='/root/autodl-tmp/BREEDS-Benchmarks/imagenet_class_hierarchy/modified')
parser.add_argument('--data_dir',
help='data path',
required=False,
type=str,
default='/root/autodl-tmp/ILSVRC2012_Data')
parser.add_argument('--base_step_pretrained_path',
help='base step pretrained model path',
required=False,
type=str,
default='ckpts/test_breeds_entity_13_300_epoch_standard_data_augment_true_step_100_epoch_bs_128_resnet18/fbresnet18/model_best.pth.tar')
parser.add_argument('--task_stat_path',
help='experiment configure file name',
required=False,
type=str,
default='experiments/entity13_5_tasks.pkl')
parser.add_argument('--exp_name',
help='experiment name',
required=False,
type=str,
default='debug_5_task_lr_1e-1_wd1e-4_mo9e-1_test')
parser.add_argument('--retrain_epoch',
help='incremental step training epoch',
required=False,
type=int,
default=20)
parser.add_argument('--IL_initial_LR',
help='incremental learning rate',
required=False,
type=float,
default=0.1)
parser.add_argument('--wd',
help='weigth decay',
required=False,
type=float,
default=0.0001)
parser.add_argument('--mo',
help='momentum',
required=False,
type=float,
default=0.9)
args = parser.parse_args()
return args
def main():
args = parse_args()
log_path = 'logs/'
os.makedirs(log_path, exist_ok=True)
log_name = "{}.log".format(args.exp_name)
logger = get_logger(log_path + log_name)
ds_name = args.ds_name
print("ds_name: {}".format(ds_name))
breeds_factory = BREEDSFactory(info_dir=args.info_dir,
data_dir=args.data_dir)
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
''' create the source_train_val_augment_dataset to obtain the step-0's feature mean '''
source_train_val_augment_dataset = breeds_factory.get_breeds(
ds_name=ds_name,
partition='train',
source=True,
mode='coarse',
transforms=transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
]),
split='rand'
)
logger.info('=> source_train_val_augment_dataset_size: {}'.format(len(source_train_val_augment_dataset)))
logger.info('=> source_train_val_augment_dataset_number_of_class :{}'.format(source_train_val_augment_dataset))
source_train_val_augment_dataset_loader = torch.utils.data.DataLoader(
source_train_val_augment_dataset,
batch_size=128, shuffle=False,
num_workers=16, pin_memory=True)
''' create target_train dataset '''
target_train_dataset = breeds_factory.get_breeds(
ds_name=ds_name,
partition='train',
source=False,
mode='coarse',
transforms=transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ColorJitter(
brightness=0.1,
contrast=0.1,
saturation=0.1),
transforms.ToTensor(),
Lighting(0.05, IMAGENET_PCA['eigval'],
IMAGENET_PCA['eigvec']),
normalize,
]),
split='rand'
)
logger.info('=> target_train_dataset_size: {}'.format(len(target_train_dataset)))
logger.info('=> target_train_dataset_number_of_class :{}'.format(target_train_dataset.num_classes))
''' create target_train_val dataset '''
target_train_val_augment_dataset = breeds_factory.get_breeds(
ds_name=ds_name,
partition='train',
source=False,
mode='coarse',
transforms=transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
]),
split='rand'
)
logger.info('=> target_train_val_augment_dataset_size: {}'.format(len(target_train_val_augment_dataset)))
logger.info('=> target_train_val_augment_dataset_number_of_class :{}'.format(target_train_val_augment_dataset))
''' create target_val dataset (i.e., test set) '''
val_val_dataset = breeds_factory.get_breeds(
ds_name=ds_name,
partition='val',
source=False,
mode='coarse',
transforms=transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
]),
split='rand'
)
logger.info('=> val_val_dataset_size: {}'.format(len(val_val_dataset)))
logger.info('=> val_val_dataset_number_of_class :{}'.format(val_val_dataset.num_classes))
''' create the data loader for the whole test set for all the incremental steps '''
val_val_loader = torch.utils.data.DataLoader(
val_val_dataset,
batch_size=128, shuffle=False,
num_workers=16, pin_memory=True)
''' create the source_val dataset, i.e., step-0's test set '''
val_source_val_dataset = breeds_factory.get_breeds(
ds_name=ds_name,
partition='val',
source=True,
mode='coarse',
transforms=transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
]),
split='rand'
)
logger.info('=> val_source_val_dataset_size: {}'.format(len(val_source_val_dataset)))
logger.info('=> val_source_val_dataset_number_of_class :{}'.format(val_source_val_dataset.num_classes))
val_source_val_loader = torch.utils.data.DataLoader(
val_source_val_dataset,
batch_size=128, shuffle=False,
num_workers=16, pin_memory=True)
# print for debug
logger.info("target_train_dataset.class_to_idx: {}".format(target_train_dataset.class_to_idx))
logger.info("target_train_dataset.coarse2fine: {}".format(target_train_dataset.coarse2fine))
logger.info("len(target_train_dataset.samples): {}".format(len(target_train_dataset.samples)))
logger.info("target_train_dataset.class_to_idx.keys(): {}".format(target_train_dataset.class_to_idx.keys()))
if ds_name == 'entity30':
class_number = 30
elif ds_name == 'entity13':
class_number = 13
logger.info("=> class_number: {}".format(class_number))
coarse_to_fine_map = dict()
for i in range(0, class_number):
coarse_to_fine_map[i] = list()
for key in target_train_dataset.class_to_idx.keys():
coarse_to_fine_map[target_train_dataset.class_to_idx[key]].append(key)
logger.info("=> coarse_to_fine_map: {}".format(coarse_to_fine_map))
inc_step_num = args.inc_step_num
logger.info("=> inc_step_num: {}".format(inc_step_num))
task_coarse_class_dict = dict()
task_size = inc_step_num + 1 # index start from 1
logger.info("=> total task_size: {}".format(task_size))
for i in range(1, task_size):
task_coarse_class_dict[i] = list()
"""
create the subclasses list for each step.
this can be different for each protocols
"""
task_stat_path = args.task_stat_path # 'entity13_5_tasks.pkl'
with open(task_stat_path, 'rb') as f:
task_coarse_class_dict = pickle.load(f)
logger.info("=> task_coarse_class_dict[1]: {}".format(task_coarse_class_dict[1]))
# print("=> set(target_train_dataset.class_to_idx.keys()): {}".format(set(target_train_dataset.class_to_idx.keys())))
''' check the subclasses separation, different task may have different code '''
logger.info("=> subclass intersection over each step: {}".format(
set(task_coarse_class_dict[1]) & set(task_coarse_class_dict[2]) & set(task_coarse_class_dict[3]) & set(task_coarse_class_dict[4]) &
set(task_coarse_class_dict[5])
)
)
assert set.union(set(task_coarse_class_dict[1]), set(task_coarse_class_dict[2]), set(task_coarse_class_dict[3]),
set(task_coarse_class_dict[4]), set(task_coarse_class_dict[5])) == set(target_train_dataset.class_to_idx.keys())
logger.info("=> task_coarse_class_dict: {}".format(task_coarse_class_dict))
'''
create the train, train_val, test set and corresponding loaders
'''
''' create each step's training images index dict '''
task_training_idx_list_dict = dict()
for i in range(1, task_size):
logger.info("task {}".format(i))
task_training_idx_list_dict[i] = list()
for subclass in task_coarse_class_dict[i]:
temp_list = [j for j in range(0, len(target_train_dataset.samples)) if
target_train_dataset.samples[j][2] == subclass]
task_training_idx_list_dict[i].extend(temp_list)
''' create each step's training Subset dict '''
dset_train_train_task_dict = dict()
for i in range(1, task_size):
dset_train_train_task_dict[i] = torch.utils.data.dataset.Subset(target_train_dataset,
task_training_idx_list_dict[i])
logger.info(len(dset_train_train_task_dict[i]))
''' create each step's training loader dict '''
target_train_train_task_loader_dict = dict()
for i in range(1, task_size):
train_sampler = None
target_train_train_task_loader_dict[i] = torch.utils.data.DataLoader(dset_train_train_task_dict[i],
batch_size=128,
shuffle=True,
num_workers=16,
pin_memory=True,
sampler=train_sampler)
''' create each step's testing images index dict '''
task_val_idx_list_dict = dict()
for i in range(1, task_size):
logger.info("task {}".format(i))
task_val_idx_list_dict[i] = list()
for subclass in task_coarse_class_dict[i]:
temp_list = [j for j in range(0, len(val_val_dataset.samples)) if val_val_dataset.samples[j][2] == subclass]
task_val_idx_list_dict[i].extend(temp_list)
for i in range(1, task_size):
logger.info("task {}, data size: {}".format(i, len(task_val_idx_list_dict[i])))
''' create each step's testing Subset dict '''
dset_val_val_task_dict = dict()
for i in range(1, task_size):
dset_val_val_task_dict[i] = torch.utils.data.dataset.Subset(val_val_dataset, task_val_idx_list_dict[i])
logger.info(len(dset_val_val_task_dict[i]))
''' create each step's testing loader dict'''
target_val_val_task_loader_dict = dict()
for i in range(1, task_size):
target_val_val_task_loader_dict[i] = torch.utils.data.DataLoader(dset_val_val_task_dict[i],
batch_size=128,
shuffle=False,
num_workers=16,
pin_memory=True)
''' Create the target_train dataset using the val augmentation.
This is used for calculate the mean feature in each previous step '''
task_target_train_val_augment_idx_list_dict = dict()
for i in range(1, task_size):
logger.info("task {}".format(i))
task_target_train_val_augment_idx_list_dict[i] = list()
for subclass in task_coarse_class_dict[i]:
temp_list = [j for j in range(0, len(target_train_val_augment_dataset.samples)) if
target_train_val_augment_dataset.samples[j][2] == subclass]
task_target_train_val_augment_idx_list_dict[i].extend(temp_list)
for i in range(1, task_size):
logger.info("=> task {}, data size: {}".format(i, len(task_target_train_val_augment_idx_list_dict[i])))
dset_target_train_val_augment_task_dict = dict()
for i in range(1, task_size):
dset_target_train_val_augment_task_dict[i] = torch.utils.data.dataset.Subset(target_train_val_augment_dataset,
task_target_train_val_augment_idx_list_dict[i])
logger.info(len(dset_target_train_val_augment_task_dict[i]))
target_train_val_augment_task_loader_dict = dict()
for i in range(1, task_size):
train_sampler = None
target_train_val_augment_task_loader_dict[i] = torch.utils.data.DataLoader(
dset_target_train_val_augment_task_dict[i], batch_size=128, shuffle=False,
num_workers=16, pin_memory=True)
''' create each step's train_val images index dict '''
train_val_class_size = 50
task_training_val_idx_list_dict = dict()
for i in range(1, task_size):
logger.info("task {}".format(i))
task_training_val_idx_list_dict[i] = list()
for subclass in task_coarse_class_dict[i]:
temp_list = [j for j in range(0, len(target_train_val_augment_dataset.samples)) if
target_train_val_augment_dataset.samples[j][2] == subclass]
task_training_val_idx_list_dict[i].extend(temp_list[0:train_val_class_size])
''' create each step's train_val Subset dict '''
dset_train_train_val_task_dict = dict()
for i in range(1, task_size):
dset_train_train_val_task_dict[i] = torch.utils.data.dataset.Subset(target_train_val_augment_dataset,
task_training_val_idx_list_dict[i])
logger.info(len(dset_train_train_val_task_dict[i]))
target_train_val_task_loader_dict = dict()
for i in range(1, task_size):
target_train_val_task_loader_dict[i] = torch.utils.data.DataLoader(dset_train_train_val_task_dict[i],
batch_size=128,
shuffle=False,
num_workers=16,
pin_memory=True)
''' training related things '''
criterion = nn.CrossEntropyLoss().cuda()
IL_initial_lr = args.IL_initial_LR
logger.info("IL initial LR: {}".format(IL_initial_lr))
retrain_epoch = args.retrain_epoch
logger.info("retrain_epoch: {}".format(retrain_epoch))
arch = 'fbresnet_extract_feature_18'
model_old = models.__dict__[arch](num_classes=val_val_dataset.num_classes, pretrained=False)
logger.info('=> Total params: %.2fM' % (sum(p.numel() for p in model_old.parameters()) / 1000000.0))
for par in model_old.parameters():
par.requires_grad = False
model_old.eval()
model_old = nn.DataParallel(model_old).cuda()
pretrain_model_path = args.base_step_pretrained_path
checkpoint = torch.load(pretrain_model_path)
model_old.load_state_dict(checkpoint['state_dict'])
model = models.__dict__[arch](num_classes=target_train_dataset.num_classes, pretrained=False)
logger.info('=> Total params: %.2fM' % (sum(p.numel() for p in model.parameters()) / 1000000.0))
model = nn.DataParallel(model).cuda()
model.load_state_dict(checkpoint['state_dict'])
model_dict = dict()
incremental_learning_momentum = args.mo
logger.info("incremental_learning_momentum: {}".format(incremental_learning_momentum))
incremental_learning_wd = args.wd
logger.info("incremental_learning_wd: {}".format(incremental_learning_wd))
load_best_train_val_model = True
logger.info("=> start incremental learning!")
for task_index in range(1, task_size):
if task_index == 1:
logger.info("=> initialize all_task_feature_label_dict ...")
all_task_feature_label_dict = dict()
else:
logger.info("=> all_task_feature_label_dict already exists ...")
previous_task_index = task_index - 1
logger.info("=> previous_task_index: {}".format(previous_task_index))
logger.info("=> before training, first obtain last step's feature mean ...")
all_task_feature_label_dict, previous_feature_label_dict = calculate_last_step_feature(previous_task_index,
model_old,
target_train_val_augment_task_loader_dict,
all_task_feature_label_dict,
class_number,
source_train_val_augment_dataset_loader)
# incremental training
logger.info("=> start training on Inc Step {}".format(task_index))
model, best_model_state, best_acc1 = inc_trainer(model,
model_old,
task_index,
target_train_train_task_loader_dict,
target_val_val_task_loader_dict,
target_train_val_task_loader_dict,
class_number,
IL_initial_lr,
retrain_epoch,
criterion,
incremental_learning_momentum,
incremental_learning_wd,
logger)
# obtain the current step's train_val and val loader
val_loader = target_val_val_task_loader_dict[task_index]
train_val_loader = target_train_val_task_loader_dict[task_index]
# load the best_model
if load_best_train_val_model:
logger.info("=> loading the best model ...")
logger.info("=> evaluate on the Stage-1's model ...")
model.load_state_dict(best_model_state)
validate(val_loader, model, criterion, logger)
validate(train_val_loader, model, criterion, logger)
logger.info("=> evaluation completed ...")
# obtain the performance dictionary
logger.info("=> calculate performance dictionary ...")
performance_dict = alpha_evaluation_(model,
model_old,
train_val_loader,
criterion,
logger
)
logger.info("=> completed performance dictionary ...")
logger.info("=> calculate calculate_val_top1_list ...")
train_val_top1_list = calculate_val_top1_list(performance_dict)
logger.info("=> completed calculate_val_top1_list ...")
if task_index == 1:
logger.info("=> initialize num_of_task_dict in Inc Step {}".format(task_index))
num_of_task_dict = dict()
else:
logger.info("=> num_of_task_dict already exists in Inc Step {}.".format(task_index))
logger.info("=> get to know what classes are introduced new subclass in Inc Step {}.".format(task_index))
num_of_task_dict = calculate_num_of_cls(previous_task_index, previous_feature_label_dict, num_of_task_dict, class_number)
logger.info("=> calculate previous_tasks_alpha_dict...")
previous_tasks_alpha_dict = get_each_previous_task_alpha_dict(model, model_old, task_index, all_task_feature_label_dict, num_of_task_dict)
logger.info("=> calculate delta_dist_dict_temp ...")
delta_dist_dict_temp = calculate_delta_dist_dict(previous_tasks_alpha_dict)
logger.info("=> calculate gradient_ratio_list ...")
gradient_ratio_list, top1_delta_large, delta_dist_large = calculate_graident_ratio_list(delta_dist_dict_temp, previous_tasks_alpha_dict, train_val_top1_list)
logger.info("top1_delta_large: {}".format(top1_delta_large))
alpha_list_len = len(np.arange(2.0, 0.0, -0.05)) # discretize the alpha value from [0, 2] with interval 0.5
if top1_delta_large >= alpha_list_len // 2:
logger.info("top1_delta mostly larger than delta_dist_list")
else:
logger.info("delta_dist_list larger than top1_delta")
balanced_ratio = calculate_balanced_ratio(gradient_ratio_list)
logger.info("balanced_ratio {} for Inc Step {}".format(balanced_ratio, task_index))
best_alpha = calculate_best_alpha_2(delta_dist_dict_temp,
previous_tasks_alpha_dict,
train_val_top1_list,
top1_delta_large,
balanced_ratio)
logger.info("Inc Step {}, best_alpha: {}".format(task_index, best_alpha))
logger.info("=> perform Linear Combination after Inc Step {} Training".format(task_index))
model = linear_combination(deepcopy(model_old), model, model_old, best_alpha, logger)
logger.info("=> validate on model {}".format(task_index))
validate(val_loader, model, criterion, logger)
validate(val_val_loader, model, criterion, logger)
validate(val_source_val_loader, model, criterion, logger)
# For the new step, the model need to be trainable
for par in model.parameters():
par.requires_grad = True
# for the new step, the model_old need to be eval
model_old = deepcopy(model)
for par in model_old.parameters():
par.requires_grad = False
model_old.eval()
# re-intialize for next step
logger.info("=> reinitialize the model and model_old for next Inc Step")
logger.info("=> after Inc Step {}, validate on model_old".format(task_index))
validate(val_loader, model_old, criterion, logger)
validate(val_val_loader, model_old, criterion, logger)
validate(val_source_val_loader, model_old, criterion, logger)
model_dict[task_index] = deepcopy(model)
path_name = 'incremental_ckpts/{}/task_{}'.format(args.exp_name, task_index)
os.makedirs(path_name + '/' + arch, exist_ok=True)
save_name = path_name + '/' + arch
is_best = True
save_checkpoint({
'epoch': retrain_epoch,
'arch': arch,
'state_dict': model_old.state_dict(),
'performance_dict': performance_dict,
}, is_best, filename=save_name, epoch=retrain_epoch)
logger.info("=> start calculating the final metrics...")
task_performance = dict()
for task_idx in range(1, task_size):
task_performance[task_idx] = dict()
for task_index in range(1, task_size):
task_performance = per_task_performance(task_performance, model_dict[task_index], task_index, val_val_loader, val_source_val_loader,
target_val_val_task_loader_dict, criterion, logger)
average_forgetting = dict()
previous_task_performance_dict = dict()
for task_ind in range(0, task_size - 1):
previous_task_performance_dict[task_ind] = list()
for task_ind in task_performance.keys():
for previous_task_ind in range(0, task_ind):
print(previous_task_ind)
previous_task_performance_dict[previous_task_ind].append(task_performance[task_ind][previous_task_ind])
task_0_test_size = 6500
each_task_test_size = 1300 # 5 tasks: 1300, 10 tasks: 650, 13 task: 500
average_top1 = dict()
target_top1 = dict()
for task_ind in task_performance.keys():
denom = task_0_test_size + task_ind * each_task_test_size
temp_acc = 0
target_acc = 0
temp_acc += task_performance[task_ind][0] * task_0_test_size / denom
for previous_task_ind in range(1, task_ind):
temp_acc += task_performance[task_ind][previous_task_ind] * each_task_test_size / denom
target_acc += task_performance[task_ind][previous_task_ind]
temp_acc += task_performance[task_ind]['current_task_val_top1'] * each_task_test_size / denom
target_acc += task_performance[task_ind]['current_task_val_top1']
target_top1[task_ind] = target_acc / task_ind
average_top1[task_ind] = temp_acc
logger.info("=> average_top1: {}".format(average_top1))
logger.info("=> target_top1: {}".format(target_top1))
result_dict = dict()
result_dict['task_performance'] = task_performance
result_dict['target_top1'] = target_top1
result_dict['average_top1'] = average_top1
path = 'results/{}_Tasks/{}/Ours/'.format(args.inc_step_num,args.exp_name)
os.makedirs(path, exist_ok=True)
result_file_name = '{}.json'.format(args.exp_name)
with open(path + result_file_name, 'w') as fp:
json.dump(result_dict, fp)
def per_task_performance(task_performance_dict,
temp_model,
task_ind,
val_val_loader,
val_source_val_loader,
target_val_val_task_loader_dict,
criterion,
logger):
previous_task_list = sorted([i for i in range(1, task_ind)], reverse=True)
val_loader = target_val_val_task_loader_dict[task_ind]
current_task_val_top1, _, _ = validate(val_loader, temp_model, criterion, logger)
task_performance_dict[task_ind]["current_task_val_top1"] = current_task_val_top1.cpu().item()
if task_ind > 1:
for previous_task_index in previous_task_list:
print("previous task index: {}".format(previous_task_index))
top1_acc_previous_task, _, _ = validate(target_val_val_task_loader_dict[previous_task_index], temp_model,
criterion, logger)
task_performance_dict[task_ind][previous_task_index] = top1_acc_previous_task.cpu().item()
top1_acc_val_all_task, _, _ = validate(val_val_loader, temp_model, criterion,logger)
task_performance_dict[task_ind]["all_target_tasks"] = top1_acc_val_all_task.cpu().item()
top1_acc_task_0, _, _ = validate(val_source_val_loader, temp_model, criterion,logger)
task_performance_dict[task_ind][0] = top1_acc_task_0.cpu().item()
return task_performance_dict
def save_checkpoint(state, is_best, filename, epoch):
if epoch in [50-1]:
torch.save(state, filename + '/checkpoint'+str(epoch)+'.pth.tar')
torch.save(state, filename +'/checkpoint.pth.tar')
if is_best:
shutil.copyfile(filename +'/checkpoint.pth.tar', filename + '/model_best.pth.tar')
def linear_combination(temp_model_new, temp_model, temp_model_old, alpha, logger):
temp_model_new = temp_model_new.to('cpu')
temp_model_new_state_dict = temp_model_new.state_dict()
temp_model_old = temp_model_old.to('cpu')
temp_model_old_state_dict = temp_model_old.state_dict()
temp_model = temp_model.to('cpu')
temp_model_state_dict = temp_model.state_dict()
logger.info("best_alpha: {}".format(alpha))
temp_model_new_state_dict['module.last_linear.weight'] = alpha * temp_model_state_dict['module.last_linear.weight'] + \
temp_model_old_state_dict['module.last_linear.weight']
logger.info(temp_model_new_state_dict['module.last_linear.weight'])
temp_model_new_state_dict['module.last_linear.bias'] = alpha * temp_model_state_dict['module.last_linear.bias'] + \
temp_model_old_state_dict['module.last_linear.bias']
logger.info(temp_model_new_state_dict['module.last_linear.bias'])
temp_model_new.load_state_dict(temp_model_new_state_dict)
temp_model_new = temp_model_new.cuda()
logger.info(temp_model_new.state_dict()['module.last_linear.weight'])
temp_model_old = temp_model_old.cuda()
temp_model = temp_model.cuda()
return temp_model_new
def calculate_best_alpha_2(delta_dist_dict, previous_tasks_alpha_dict, val_top1_list, top1_delta_large, balanced_ratio):
best_alpha = 0
loss_list = list()
for key in range(20, len(delta_dist_dict[0])):
print(key)
alpha = list(previous_tasks_alpha_dict[0].keys())[key]
print("alpha: {}".format(alpha))
top1_delta = val_top1_list[key] - val_top1_list[len(delta_dist_dict[0]) - 1]
print("top1 delta: {}".format(top1_delta))
forgetting_loss = list()
for task_id in previous_tasks_alpha_dict.keys():
temp_task_loss = delta_dist_dict[task_id][key] - delta_dist_dict[task_id][-1]
print("task {} delta_dist_delta: {}".format(task_id, temp_task_loss))
forgetting_loss.append(abs(temp_task_loss))
if top1_delta_large > 10: # top1 loss term is much larger
if balanced_ratio < 0.5:
loss = balanced_ratio * top1_delta - (1 - balanced_ratio) * sum(forgetting_loss)
else:
loss = (1 - balanced_ratio) * top1_delta - balanced_ratio * sum(forgetting_loss)
elif abs(top1_delta_large - 10) <= 3:
loss = top1_delta - sum(forgetting_loss)
else: # delta_dist_delta loss term is much larger
if balanced_ratio < 0.5:
loss = (1 - balanced_ratio) * top1_delta - (balanced_ratio) * sum(forgetting_loss)
else:
loss = balanced_ratio * top1_delta - (1 - balanced_ratio) * sum(forgetting_loss)
print("alpha: {}, loss: {}".format(alpha, loss))
loss_list.append(loss)
if loss >= max(loss_list) and alpha != 0:
best_alpha = alpha
print("best alpha: {}".format(best_alpha))
return best_alpha
def calculate_balanced_ratio(gradient_ratio_list):
temp_mean = sum(gradient_ratio_list) / len(gradient_ratio_list)
temp_min = min(gradient_ratio_list)
if temp_mean - temp_min >= 0.5:
balanced_ratio = temp_min
else:
if temp_min >= 0.5: # all the gradient is very large, now it is safe to use the min to balanced two term
balanced_ratio = temp_min
elif temp_min >= 0.25:
balanced_ratio = temp_min
elif temp_mean >= 0.45 or temp_mean <= 0.55: # it is much stable to use the mean of temp_mean and temp_min when the temp_mean is 0.5+-0.05
balanced_ratio = (temp_min + temp_mean) / 2
else:
balanced_ratio = temp_mean
return balanced_ratio
def calculate_graident_ratio_list(delta_dist_dict, previous_tasks_alpha_dict, val_top1_list):
gradient_ratio_list = list()
top1_delta_large = 0
delta_dist_large = 0
for key in range(20, len(delta_dist_dict[0])):
print(key)
alpha = list(previous_tasks_alpha_dict[0].keys())[key]
top1_delta = val_top1_list[key] - val_top1_list[len(delta_dist_dict[0])-1]
print("top1 delta: {}".format(top1_delta))
forgetting_loss = list()
for task_id in previous_tasks_alpha_dict.keys():
temp_task_loss = delta_dist_dict[task_id][key] - delta_dist_dict[task_id][-1]
print("task {} delta_dist_delta: {}".format(task_id, temp_task_loss))
forgetting_loss.append(abs(temp_task_loss))
if alpha != 0:
if abs(top1_delta) > sum(forgetting_loss):
gradient_ratio = sum(forgetting_loss) / abs(top1_delta)
print('top1_delta > delta_dist_delta')
top1_delta_large += 1
else:
gradient_ratio = abs(top1_delta) / sum(forgetting_loss)
print('top1_delta < delta_dist_delta')